13 resultados para RADIAL-VELOCITY SURVEYS

em Universidad de Alicante


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars1, 2, 3 (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions2, 3, 4. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification6 and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe ii profiles from the equatorial disk, and a refined Be classification (to that of a B1.5–B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10−7 times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Gaia-ESO Survey is a large public spectroscopic survey that aims to derive radial velocities and fundamental parameters of about 105 Milky Way stars in the field and in clusters. Observations are carried out with the multi-object optical spectrograph FLAMES, using simultaneously the medium-resolution (R ~ 20 000) GIRAFFE spectrograph and the high-resolution (R ~ 47 000) UVES spectrograph. In this paper we describe the methods and the software used for the data reduction, the derivation of the radial velocities, and the quality control of the FLAMES-UVES spectra. Data reduction has been performed using a workflow specifically developed for this project. This workflow runs the ESO public pipeline optimizing the data reduction for the Gaia-ESO Survey, automatically performs sky subtraction, barycentric correction and normalisation, and calculates radial velocities and a first guess of the rotational velocities. The quality control is performed using the output parameters from the ESO pipeline, by a visual inspection of the spectra and by the analysis of the signal-to-noise ratio of the spectra. Using the observations of the first 18 months, specifically targets observed multiple times at different epochs, stars observed with both GIRAFFE and UVES, and observations of radial velocity standards, we estimated the precision and the accuracy of the radial velocities. The statistical error on the radial velocities is σ ~ 0.4 km s-1 and is mainly due to uncertainties in the zero point of the wavelength calibration. However, we found a systematic bias with respect to the GIRAFFE spectra (~0.9 km s-1) and to the radial velocities of the standard stars (~0.5 km s-1) retrieved from the literature. This bias will be corrected in the future data releases, when a common zero point for all the set-ups and instruments used for the survey is be established.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. Four clusters of red supergiants have been discovered in a region of the Milky Way close to base of the Scutum-Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. If the clusters are physically connected, this Scutum Complex would be the largest and most massive star-forming region ever identified in the Milky Way. Aims. The spatial extent of one of these clusters, RSGC3, has not been investigated. In this paper we explore the possibility that a population of red supergiants could be located in its vicinity. Methods. We utilised 2MASS JHKS photometry to identify candidate obscured luminous red stars in the vicinity of RSGC3. We observed a sample of candidates with the TWIN spectrograph on the 3.5-m telescope at Calar Alto, obtaining intermediate-resolution spectroscopy in the 8000−9000 Å range. We re-evaluated a number of classification criteria proposed in the literature for this spectral range and found that we could use our spectra to derive spectral types and luminosity classes. Results. We measured the radial velocity of five members of RSGC3, finding velocities similar to the average for members of Stephenson 2. Among the candidates observed outside the cluster, our spectra revealed eight M-type supergiants at distances <18′ from the centre of RSGC3, distributed in two clumps. The southern clump is most likely another cluster of red supergiants, with reddening and age identical to RSGC3. From 2MASS photometry, we identified four likely supergiant members of the cluster in addition to the five spectroscopically observed. The northern clump may be a small cluster with similar parameters. Photometric analysis of the area around RSGC3 suggests the presence of a large (>30) population of red supergiants with similar colours. Conclusions. Our data suggest that the massive cluster RSGC3 is surrounded by an extended association, which may be very massive ( ≳ 105 M⊙). We also show that supergiants in the Scutum Complex may be characterised via a combination of 2MASS photometry and intermediate-to-high-resolution spectroscopy in the Z band.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims. We report near-infrared observations of the supergiant donor to the eclipsing high mass X-ray binary pulsar IGR J18027-2016. We aim to determine its spectral type and measure its radial velocity curve and hence determine the stellar masses of the components. Methods. ESO/VLT observations of the donor utilising the NIR spectrograph ISAAC were obtained in the H and K bands. The multi-epoch H band spectra were cross-correlated with RV templates in order to determine a radial solution for the system. Results. The spectral type of the donor was confirmed as B0-1 I. The radial velocity curve constructed has a semi-amplitude of 23.8 ± 3.1 km s-1. Combined with other measured system parameters, a dynamically determined neutron star mass of 1.4  ±  0.2–1.6  ±  0.3 M⊙ is found. The mass range of the B0-B1 I donor was 18.6  ±  0.8–21.8  ±  2.4 M⊙. These lower and upper limits were obtained under the assumption that the system is viewed edge-on (i = 90° with β = 0.89) for the lower limit and the donor fills its Roche lobe (β = 1 with i = 73.1°) for the upper limit respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report near-infrared radial velocity (RV) measurements of the recently identified donor star in the high mass X-ray binary (HMXB) system OAO 1657−415 obtained in the H band using ISAAC on the Very Large Telescope. Cross-correlation methods were employed to construct a RV curve with a semi-amplitude of 22.1 ± 3.5 km s−1. Combined with other measured parameters of this system it provides a dynamically determined neutron star (NS) mass of 1.42 ± 0.26 M⊙ and a mass of 14.3 ± 0.8 M⊙ for the Ofpe/WN9 highly evolved donor star. OAO 1657−415 is an eclipsing HMXB pulsar with the largest eccentricity and orbital period of any within its class. Of the 10 known eclipsing X-ray binary pulsars OAO 1657−415 becomes the ninth with a dynamically determined NS mass solution and only the second in an eccentric system. Furthermore, the donor star in OAO 1657−415 is much more highly evolved than the majority of the supergiant donors in other HMXBs, joining a small but growing list of HMXBs donors with extensive hydrogen depleted atmospheres. Considering the evolutionary development of OAO 1657−415, we have estimated the binding energy of the envelope of the mass donor and find that there is insufficient energy for the removal of the donor’s envelope via spiral-in, ruling out a common envelope evolutionary scenario. With its non-zero eccentricity and relatively large orbital period the identification of a definitive evolutionary pathway for OAO 1657−415 remains problematic, we conclude by proposing two scenarios which may account for OAO 1657−415 current orbital configuration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. The current generation of X-ray satellites has discovered many new X-ray sources that are difficult to classify within the well-described subclasses. The hard X-ray source IGR J11215−5952 is a peculiar transient, displaying very short X-ray outbursts every 165 days. Aims. To characterise the source, we obtained high-resolution spectra of the optical counterpart, HD 306414, at different epochs, spanning a total of three months, before and around the 2007 February outburst with the combined aims of deriving its astrophysical parameters and searching for orbital modulation. Methods. We fit model atmospheres generated with the fastwind code to the spectrum, and used the interstellar lines in the spectrum to estimate its distance. We also cross-correlated each individual spectrum to the best-fit model to derive radial velocities. Results. From its spectral features, we classify HD 306414 as B0.5 Ia. From the model fit, we find Teff ≈ 24 700 K and log g ≈ 2.7, in good agreement with the morphological classification. Using the interstellar lines in its spectrum, we estimate a distance to HD 306414 d ≳ 7 kpc. Assuming this distance, we derive R∗ ≈ 40 R⊙ and Mspect ≈ 30 M⊙ (consistent, within errors, with Mevol ≈ 38 M⊙, and in good agreement with calibrations for the spectral type). Analysis of the radial velocity curve reveals that radial velocity changes are not dominated by the orbital motion, and provide an upper limit on the semi-amplitude for the optical component Kopt ≲ 11 ± 6 km   s-1. Large variations in the depth and shape of photospheric lines suggest the presence of strong pulsations, which may be the main cause of the radial velocity changes. Very significant variations, uncorrelated with those of the photospheric lines are seen in the shape and position of the Hα emission feature around the time of the X-ray outburst, but large excursions are also observed at other times. Conclusions. HD 306414 is a normal B0.5 Ia supergiant. Its radial velocity curve is dominated by an effect that is different from binary motion, and is most likely stellar pulsations. The data available suggest that the X-ray outbursts are caused by the close passage of the neutron star in a very eccentric orbit, perhaps leading to localised mass outflow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. BD + 60° 73 is the optical counterpart of the X-ray source IGR J00370+6122, a probable accretion-powered X-ray pulsar. The X-ray light curve of this binary system shows clear periodicity at 15.7 d, which has been interpreted as repeated outbursts around the periastron of an eccentric orbit. Aims. We aim to characterise the binary system IGR J00370+6122 by deriving its orbital and physical parameters. Methods. We obtained high-resolution spectra of BD + 60° 73 at different epochs. We used the fastwind code to generate a stellar atmosphere model to fit the observed spectrum and obtain physical magnitudes. The synthetic spectrum was used as a template for cross-correlation with the observed spectra to measure radial velocities. The radial velocity curve provided an orbital solution for the system. We also analysed the RXTE/ASM and Swift/BAT light curves to confirm the stability of the periodicity. Results. BD + 60° 73 is a BN0.7 Ib low-luminosity supergiant located at a distance ~3.1 kpc, in the Cas OB4 association. We derive Teff = 24 000 K and log gc = 3.0, and chemical abundances consistent with a moderately high level of evolution. The spectroscopic and evolutionary masses are consistent at the 1-σ level with a mass M∗ ≈ 15 M⊙. The recurrence time of the X-ray flares is the orbital period of the system. The neutron star is in a high-eccentricity (e = 0.56 ± 0.07) orbit, and the X-ray emission is strongly peaked around orbital phase φ = 0.2, though the observations are consistent with some level of X-ray activity happening at all orbital phases. Conclusions. The X-ray behaviour of IGR J00370+6122 is reminiscent of “intermediate” supergiant X-ray transients, though its peak luminosity is rather low. The orbit is somewhat wider than those of classical persistent supergiant X-ray binaries, which when combined with the low luminosity of the mass donor, explains the low X-ray luminosity. IGR J00370+6122 will very likely evolve towards a persistent supergiant system, highlighting the evolutionary connection between different classes of wind-accreting X-ray sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. It has been suggested that the compact open cluster VdBH 222 is a young massive distant object. Aims. We set out to characterise VdBH 222 using a comprehensive set of multi-wavelength observations. Methods. We obtained multi-band optical (UBVR) and near-infrared (JHKS) photometry of the cluster field, as well as multi-object and long-slit optical spectroscopy for a large sample of stars in the field. We applied classical photometric analysis, as well as more sophisticated methods using the CHORIZOS code, to determine the reddening to the cluster. We then plotted dereddened HR diagrams and determined cluster parameters via isochrone fitting. Results. We have identified a large population of luminous supergiants confirmed as cluster members via radial velocity measurements. We find nine red supergiants (plus one other candidate) and two yellow supergiants. We also identify a large population of OB stars. Ten of them are bright enough to be blue supergiants. The cluster lies behind ≈7.5 mag of extinction for the preferred value of RV = 2.9. Isochrone fitting allows for a narrow range of ages between 12 and 16 Ma. The cluster radial velocity is compatible with distances of ~6 and ~10 kpc. The shorter distance is inconsistent with the age range and Galactic structure. The longer distance implies an age ≈ 12 Ma and a location not far from the position where some Galactic models place the far end of the Galactic bar. Conclusions. VdBH 222 is a young massive cluster with a likely mass >20 000 M⊙. Its population of massive evolved stars is comparable to that of large associations, such as Per OB1. Its location in the inner Galaxy, presumably close to the end of the Galactic bar, adds to the increasing evidence for vigorous star formation in the inner regions of the Milky Way.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. The early-type binary MY Cam belongs to the young open cluster Alicante 1, embedded in Cam OB3. Aims. MY Cam consists of two early-O type main-sequence stars and shows a photometric modulation suggesting an orbital period slightly above one day. We intend to confirm this orbital period and derive orbital and stellar parameters. Methods. Timing analysis of a very exhaustive (4607 points) light curve indicates a period of 1.1754514 ± 0.0000015 d. High-resolution spectra and the cross-correlation technique implemented in the todcor program were used to derive radial velocities and obtain the corresponding radial velocity curves for MY Cam. Modelling with the stellar atmosphere code fastwind was used to obtain stellar parameters and create templates for cross-correlation. Stellar and orbital parameters were derived using the Wilson-Devinney code, such that a complete solution to the binary system could be described. Results. The determined masses of the primary and secondary stars in MY Cam are 37.7 ± 1.6 and 31.6 ± 1.4M⊙, respectively. The corresponding temperatures, derived from the model atmosphere fit, are 42 000 and 39 000 K, with the more massive component being hotter. Both stars are overfilling their Roche lobes, sharing a common envelope. Conclusions. MY Cam contains the most massive dwarf O-type stars found so far in an eclipsing binary. Both components are still on the main sequence, and probably not far from the zero-age main sequence. The system is a likely merger progenitor, owing to its very short period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We provide a complete characterization of the astrophysical properties of the σ Ori Aa, Ab, B hierarchical triple system and an improved set of orbital parameters for the highly eccentric σ Ori Aa, Ab spectroscopic binary. We compiled a spectroscopic data set comprising 90 high-resolution spectra covering a total time span of 1963 days. We applied the Lehman-Filhés method for a detailed orbital analysis of the radial velocity curves and performed a combined quantitative spectroscopic analysis of the σ Ori Aa, Ab, B system by means of the stellar atmosphere code FASTWIND. We used our own plus other available information on photometry and distance to the system for measuring the radii, luminosities, and spectroscopic masses of the three components. We also inferred evolutionary masses and stellar ages using the Bayesian code BONNSAI. The orbital analysis of the new radial velocity curves led to a very accurate orbital solution of the σ Ori Aa, Ab pair. We provided indirect arguments indicating that σ Ori B is a fast-rotating early B dwarf. The FASTWIND+BONNSAI analysis showed that the Aa, Ab pair contains the hottest and most massive components of the triple system while σ Ori B is a bit cooler and less massive. The derived stellar ages of the inner pair are intriguingly younger than the one widely accepted for the σ Orionis cluster, at 3 ± 1 Ma. The outcome of this study will be of key importance for a precise determination of the distance to the σ Orionis cluster, the interpretation of the strong X-ray emission detected for σ Ori Aa, Ab, B, and the investigation of the formation and evolution of multiple massive stellar systems and substellar objects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. The first soft gamma-ray repeater was discovered over three decades ago, and was subsequently identified as a magnetar, a class of highly magnetised neutron star. It has been hypothesised that these stars power some of the brightest supernovae known, and that they may form the central engines of some long duration gamma-ray bursts. However there is currently no consenus on the formation channel(s) of these objects. Aims. The presence of a magnetar in the starburst cluster Westerlund 1 implies a progenitor with a mass ≥40 M⊙, which favours its formation in a binary that was disrupted at supernova. To test this hypothesis we conducted a search for the putative pre-SN companion. Methods. This was accomplished via a radial velocity survey to identify high-velocity runaways, with subsequent non-LTE model atmosphere analysis of the resultant candidate, Wd1-5. Results. Wd1-5 closely resembles the primaries in the short-period binaries, Wd1-13 and 44, suggesting a similar evolutionary history, although it currently appears single. It is overluminous for its spectroscopic mass and we find evidence of He- and N-enrichement, O-depletion, and critically C-enrichment, a combination of properties that is difficult to explain under single star evolutionary paradigms. We infer a pre-SN history for Wd1-5 which supposes an initial close binary comprising two stars of comparable (~ 41 M⊙ + 35 M⊙) masses. Efficient mass transfer from the initially more massive component leads to the mass-gainer evolving more rapidly, initiating luminous blue variable/common envelope evolution. Reverse, wind-driven mass transfer during its subsequent WC Wolf-Rayet phase leads to the carbon pollution of Wd1-5, before a type Ibc supernova disrupts the binary system. Under the assumption of a physical association between Wd1-5 and J1647-45, the secondary is identified as the magnetar progenitor; its common envelope evolutionary phase prevents spin-down of its core prior to SN and the seed magnetic field for the magnetar forms either in this phase or during the earlier episode of mass transfer in which it was spun-up. Conclusions. Our results suggest that binarity is a key ingredient in the formation of at least a subset of magnetars by preventing spin-down via core-coupling and potentially generating a seed magnetic field. The apparent formation of a magnetar in a Type Ibc supernova is consistent with recent suggestions that superluminous Type Ibc supernovae are powered by the rapid spin-down of these objects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. The eclipsing binary GU Mon is located in the star-forming cluster Dolidze 25, which has the lowest metallicity measured in a Milky Way young cluster. Aims. GU Mon has been identified as a short-period eclipsing binary with two early B-type components. We set out to derive its orbital and stellar parameters. Methods. We present a comprehensive analysis, including B and V light curves and 11 high-resolution spectra, to verify the orbital period and determine parameters. We used the stellar atmosphere code FASTWIND to obtain stellar parameters and create templates for cross-correlation. We obtained a model to fit the light and radial-velocity curves using the Wilson-Devinney code iteratively and simultaneously. Results. The two components of GU Mon are identical stars of spectral type B1 V with the same mass and temperature. The light curves are typical of an EW-type binary. The spectroscopic and photometric analyses agree on a period of 0.896640 ± 0.000007 d. We determine a mass of 9.0 ± 0.6 M⊙ for each component and for temperatures of 28 000 ± 2000 K. Both values are consistent with the spectral type. The two stars are overfilling their respective Roche lobes, sharing a common envelope and, therefore the orbit is synchronised and circularised. Conclusions. The GU Mon system has a fill-out factor above 0.8, containing two dwarf B-type stars on the main sequence. The two stars are in a very advanced stage of interaction, with their extreme physical similarity likely due to the common envelope. The expected evolution of such a system very probably leads to a merger while still on the main sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the relationship between age, metallicity, and α-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpcto 9.5 kpc, and vertical distances from the plane 0 < |Z| < 1.5 kpc. On this basis, we find that i) the observed age-metallicity relation is nearly flat in the range of ages between 0 Gyr and 8 Gyr; ii) at ages older than 9 Gyr, we see a decrease in [Fe/H] and a clear absence of metal-rich stars; this cannot be explained by the survey selection functions; iii) there is a significant scatter of [Fe/H] at any age; and iv) [Mg/Fe] increases with age, but the dispersion of [Mg/Fe] at ages >9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more α-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.