4 resultados para RACEMIC LACTIDE

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of biopolymers obtained from renewable resources is currently growing and they have found unique applications as matrices and/or nanofillers in ‘green’ nanocomposites. Grafting of polymer chains to the surface of cellulose nanofillers was also studied to promote the dispersion of cellulose nanocrystals in hydrophobic polymer matrices. The aim of this study was to modify the surface of cellulose nanocrystals by grafting from L-lactide by ring-opening polymerization in order to improve the compatibility of nanocrystals and hydrophobic polymer matrices. The effectiveness of the grafting was evidenced by the long-term stability of a suspension of poly(lactic acid)-grafted cellulose nanocrystals in chloroform, by the presence of the carbonyl peak in modified samples determined by Fourier transform infrared spectroscopy and by the modification in C1s contributions observed by X-ray photoelectron spectroscopy. No modification in nanocrystal shape was observed in birefringence studies and transmission electron microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disintegration under composting conditions of films based on poly(lactic acid)–poly(hydroxybutyrate) (PLA–PHB) blends and intended for food packaging was studied. Two different plasticizers, poly(ethylene glycol) (PEG) and acetyl-tri-n-butyl citrate (ATBC), were used to limit the inherent brittleness of both biopolymers. Neat PLA, plasticized PLA and PLA–PHB films were processed by melt-blending and compression molding and they were further treated under composting conditions in a laboratory-scale test at 58 ± 2 °C. Disintegration levels were evaluated by monitoring their weight loss at different times: 0, 7, 14, 21 and 28 days. Morphological changes in all formulations were followed by optical and scanning electron microscopy (SEM). The influence of plasticizers on the disintegration of PLA and PLA–PHB blends was studied by evaluating their thermal and nanomechanical properties by thermogravimetric analysis (TGA) and the nanoindentation technique, respectively. Meanwhile, structural changes were followed by Fourier transformed infrared spectroscopy (FTIR). The ability of PHB to act as nucleating agent in PLA–PHB blends slowed down the PLA disintegration, while plasticizers speeded it up. The relationship between the mesolactide to lactide forms of PLA was calculated with a Pyrolysis–Gas Chromatography–Mass Spectrometry device (Py–GC/MS), revealing that the mesolactide form increased during composting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Azomethine imines are considered 1,3-dipoles of the aza-allyl type which are transient intermediates and should be generated in situ but can also be stable and isolable compounds. They react with electron-rich and electron-poor olefins as well as with acetylenic compounds and allenoates mainly by a [3 + 2] cycloaddition but they can also take part in [3 + 3], [4 + 3], [3 + 2 + 2] and [5 + 3] with different dipolarophiles. These 1,3-dipolar cycloadditions (1,3-DC) can be performed not only under thermal or microwave conditions but also using metallo- and organocatalytic systems. In recent years enantiocatalyzed 1,3-dipolar cycloadditions have been extensively considered and applied to the synthesis of a great variety of dinitrogenated heterocycles with biological activity. Acyclic azomethine imines derived from mono and disubstituted hydrazones could be generated by prototropy under heating or by using Lewis or Brønsted acids to give, after [3 + 2] cycloadditions, pyrazolidines and pyrazolines. Cyclic azomethine imines, incorporating a C–N bond in a ring, such as isoquinolinium imides are the most widely used dipoles in normal and inverse-electron demand 1,3-DC allowing the synthesis of tetrahydro-, dihydro- and unsaturated pyrazolo[1,5-a]isoquinolines in racemic and enantioenriched forms with interesting biological activity. Pyridinium and quinolinium imides give the corresponding pyrazolopyridines and indazolo[3,2-a]isoquinolines, respectively. In the case of cyclic azomethine imines with an N–N bond incorporated into a ring, N-alkylidene-3-oxo-pyrazolidinium ylides are the most popular stable and isolated dipoles able to form dinitrogen-fused saturated and unsaturated pyrazolopyrazolones as racemic or enantiomerically enriched compounds present in many pharmaceuticals, agrochemicals and other useful chemicals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the deep eutectic solvents (DES), natural deep eutectic solvents (NADES) formed by D-glucose and racemic malic acid are suitable media to perform the enantioselective L-proline catalyzed intermolecular aldol reaction, creating simultaneously and selectively a C–C bond and a new stereocenter. The scope of the reaction was found to be broad, with products being obtained with good levels of diastereo- and enantioselectivities. Furthermore, when the reaction was performed at a large scale, the catalyst together with the reaction media can be recovered by simple water extraction and reused at least three times affording similar results. Therefore, the use of NADES as reaction media to carry out a VOC-free selective process has been demonstrated for the first time. The process is clean, cheap, simple and scalable and meets most of the criteria to be considered as a sustainable and bio-renewable process, with the reaction media and catalyst arising directly from Nature.