7 resultados para Quasars: emission lines
em Universidad de Alicante
Resumo:
Aims. We study the optical and near-infrared colour excesses produced by circumstellar emission in a sample of Be/X-ray binaries. Our main goals are exploring whether previously published relations, valid for isolated Be stars, are applicable to Be/X-ray binaries and computing the distance to these systems after correcting for the effects of the circumstellar contamination. Methods. Simultaneous UBVRI photometry and spectra in the 3500−7000 Å spectral range were obtained for 11 optical counterparts to Be/X-ray binaries in the LMC, 5 in the SMC and 12 in the Milky Way. As a measure of the amount of circumstellar emission we used the Hα equivalent width corrected for photospheric absorption. Results. We find a linear relationship between the strength of the Hα emission line and the component of E(B − V) originating from the circumstellar disk. This relationship is valid for stars with emission lines weaker than EW ≈ −15 Å. Beyond this point, the circumstellar contribution to E(B − V) saturates at a value ≈0.17 mag. A similar relationship is found for the (V − I) near infrared colour excess, albeit with a steeper slope and saturation level. The circumstellar excess in (B − V) is found to be about five times higher for Be/X-ray binaries than for isolated Be stars with the same equivalent width EW(Hα), implying significant differences in the physical properties of their circumstellar envelopes. The distance to Be/X-ray binaries (with non-shell Be star companions) can only be correctly estimated by taking into account the excess emission in the V band produced by free-free and free-bound transitions in the circumstellar envelope. We provide a simple method to determine the distances that includes this effect.
Resumo:
In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma–atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w− 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.
Resumo:
Context. We report the infrared identification of the X-ray source 2XMM J191043.4+091629.4, which was detected by XMM-Newton/EPIC in the vicinity of the Galactic supernova remnant W49B. Aims. The aim of this work is to establish the nature of the X-ray source 2XMM J191043.4+091629.4 studying both the infrared photometry and spectroscopy of the companion. Methods. We analysed UKIDSS images around the best position of the X-ray source and obtained spectra of the best candidate using NICS in the Telescopio Nazionale Galileo (TNG) 3.5-m telescope. We present photometric and spectroscopic TNG analyses of the infrared counterpart of the X-ray source, identifying emission lines in the K-band. The H-band spectra does not present any significant feature. Results. We have shown that the Brackett γ H i at 2.165 μm, and He i at 2.184 μm and at 2.058 μm are significantly present in the infrared spectrum. The CO bands are also absent from our spectrum. Based on these results and the X-ray characteristics of the source, we conclude that the infrared counterpart is an early B-type supergiant star with an E(B − V) = 7.6 ± 0.3 at a distance of 16.0 ± 0.5 kpc. This would be, therefore, the first high-mass X-ray binary in the Outer Arm at galactic longitudes of between 30° and 60°.
Resumo:
Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars1, 2, 3 (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions2, 3, 4. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification6 and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe ii profiles from the equatorial disk, and a refined Be classification (to that of a B1.5–B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10−7 times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.
Resumo:
We present analysis of 100 ks contiguous XMM-Newton data of the prototypical wind accretor Vela X-1. The observation covered eclipse egress between orbital phases 0.134 and 0.265, during which a giant flare took place, enabling us to study the spectral properties both outside and during the flare. This giant flare with a peak luminosity of 3.92+0.42-0.09 × 1037 erg s-1 allows estimates of the physical parameters of the accreted structure with a mass of ~1021 g. We have been able to model several contributions to the observed spectrum with a phenomenological model formed by three absorbed power laws plus three emission lines. After analysing the variations with orbital phase of the column density of each component, as well as those in the Fe and Ni fluorescence lines, we provide a physical interpretation for each spectral component. Meanwhile, the first two components are two aspects of the principal accretion component from the surface of the neutron star, the third component seems to be the X-ray light echo formed in the stellar wind of the companion.
Resumo:
In a previous work, we introduced a tool for analyzing multiple datasets simultaneously, which has been implemented into ISIS. This tool was used to fit many spectra of X-ray binaries. However, the large number of degrees of freedom and individual datasets raise an issue about a good measure for a simultaneous fit quality. We present three ways to check the goodness of these fits: we investigate the goodness of each fit in all datasets, we define a combined goodness exploiting the logical structure of a simultaneous fit, and we stack the fit residuals of all datasets to detect weak features. These tools are applied to all RXTE-spectra from GRO 1008−57, revealing calibration features that are not detected significantly in any single spectrum. Stacking the residuals from the best-fit model for the Vela X-1 and XTE J1859+083 data evidences fluorescent emission lines that would have gone undetected otherwise.
Resumo:
Context. Since its launch, the X-ray and γ-ray observatory INTEGRAL satellite has revealed a new class of high-mass X-ray binaries (HMXB) displaying fast flares and hosting supergiant companion stars. Optical and infrared (OIR) observations in a multi-wavelength context are essential to understand the nature and evolution of these newly discovered celestial objects. Aims. The goal of this multiwavelength study (from ultraviolet to infrared) is to characterise the properties of IGR J16465−4507, to confirm its HMXB nature and that it hosts a supergiant star. Methods. We analysed all OIR, photometric and spectroscopic observations taken on this source, carried out at ESO facilities. Results. Using spectroscopic data, we constrained the spectral type of the companion star between B0.5 and B1 Ib, settling the debate on the true nature of this source. We measured a high rotation velocity of v = 320 ± 8km s-1 from fitting absorption and emission lines in a stellar spectral model. We then built a spectral energy distribution from photometric observations to evaluate the origin of the different components radiating at each energy range. Conclusions. We finally show that, having accurately determined the spectral type of the early-B supergiant in IGR J16465−4507, we firmly support its classification as an intermediate supergiant fast X-ray transient (SFXT).