3 resultados para Quantum-sized anatase nanowires
em Universidad de Alicante
Resumo:
TiO2 nanotubes (NTs) have been widely used for a number of applications including solar cells, photo(electro)chromic devices, and photocatalysis. Their quasi-one-dimensional morphology has the advantage of a fast electron transport although they have a relatively reduced interfacial area compared with nanoparticulate films. In this study, vertically oriented, smooth TiO2 NT arrays fabricated by anodization are decorated with ultrathin anatase nanowires (NWs). This facile modification, performed by chemical bath deposition, allows to create an advantageous self-organized structure that exhibits remarkable properties. On one hand, the huge increase in the electroactive interfacial area induces an improvement by 1 order of magnitude in the charge accumulation capacity. On the other hand, the modified NT arrays display larger photocurrents for water and oxalic acid oxidation than bare NTs. Their particular morphology enables a fast transfer of photogenerated holes but also efficient mass and electron transport. The importance of a proper band energy alignment for electron transfer from the NWs to the NTs is evidenced by comparing the behavior of these electrodes with that of NTs modified with rutile NWs. The NT-NW self-organized architecture allows for a precise design and control of the interfacial surface area, providing a material with particularly attractive properties for the applications mentioned above.
Resumo:
The conductance of atomic-sized metallic point contacts is shown to be strongly voltage dependent due to quantum interference with impurities even in samples with low impurity concentrations. Transmission through these small contacts depends not only on the local atomic structure at the contact but also on the distribution of impurities or defects within a coherence length of the contact. In contrast with other mesoscopic systems we show that transport through atomic contacts is coherent even at room temperature. The use of a scanning tunneling microscope (STM) makes it possible to fabricate one atom contacts of gold whose transmission can be controlled by manipulation of the contact allowing inelastic spectroscopy in such small contacts.
Resumo:
The magnetization reversal of two-dimensional arrays of parallel ferromagnetic Fe nanowires embedded in nanoporous alumina templates has been studied. By combining bulk magnetization measurements (superconducting quantum interference device magnetometry) with field-dependent magnetic force microscopy (MFM), we have been able to decompose the macroscopic hysteresis loop in terms of the irreversible magnetic responses of individual nanowires. The latter are found to behave as monodomain ferromagnetic needles, with hysteresis loops displaced (asymmetric) as a consequence of the strong dipolar interactions between them. The application of field-dependent MFM provides a microscopic method to obtain the hysteresis curve of the array, by simply registering the fraction of up and down magnetized wires as a function of applied field. The observed deviations from the rectangular shape of the macroscopic hysteresis loop of the array can be ascribed to the spatial variation of the dipolar field through the inhomogeneously filled membrane. The system studied proves to be an excellent example of the two-dimensional classical Preisach model, well known from the field of hysteresis modeling and micromagnetism.