2 resultados para Quadratic Number Field

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Array measurements have become a valuable tool for site response characterization in a non-invasive way. The array design, i.e. size, geometry and number of stations, has a great influence in the quality of the obtained results. From the previous parameters, the number of available stations uses to be the main limitation for the field experiments, because of the economical and logistical constraints that it involves. Sometimes, from the initially planned array layout, carefully designed before the fieldwork campaign, one or more stations do not work properly, modifying the prearranged geometry. Whereas other times, there is not possible to set up the desired array layout, because of the lack of stations. Therefore, for a planned array layout, the number of operative stations and their arrangement in the array become a crucial point in the acquisition stage and subsequently in the dispersion curve estimation. In this paper we carry out an experimental work to analyze which is the minimum number of stations that would provide reliable dispersion curves for three prearranged array configurations (triangular, circular with central station and polygonal geometries). For the optimization study, we analyze together the theoretical array responses and the experimental dispersion curves obtained through the f-k method. In the case of the f-k method, we compare the dispersion curves obtained for the original or prearranged arrays with the ones obtained for the modified arrays, i.e. the dispersion curves obtained when a certain number of stations n is removed, each time, from the original layout of X geophones. The comparison is evaluated by means of a misfit function, which helps us to determine how constrained are the studied geometries by stations removing and which station or combination of stations affect more to the array capability when they are not available. All this information might be crucial to improve future array designs, determining when it is possible to optimize the number of arranged stations without losing the reliability of the obtained results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, on a global level, the Higher Education System has a complex and broad horizon of curricular tools to use in the teaching and learning process. In addition to these new educational instruments, full of possibilities, we face specific socio-economic conditions that affect in a significantly way the Curriculum Development in certain knowledge areas (areas traditionally built on a methodology based on a physical presence of students in the classroom). Some areas such as Restoration, Rehabilitation or Construction Pathologies, and the construction sector in general, require very defined and particular knowledge that only a small number of experts claim as specialized training. All these aspects condition the teaching methodology performed in a physical classroom at a university campus (the only option used until recent years) and made us consider the integration of online teaching in these areas too. The present work shows the teaching methodology used for the development of two online courses, where we offer distance learning for "highly specialized" formation in the Edification area (an area where traditionally there was only classroom training). At the beginning, both courses were designed by classroom training, but got a really small number of applications due to the specialized topic proposed. Later, we proposed a "Curriculum Redesign" of the contents, offering an online modality, which implied a significant demand both within and outside the university area. A notable feature of this educational experience is the great spectrum opened for attendees of both courses in the online version. This situation improved significantly the "Curriculum Development" for the student and implied an interesting new proposal on the offered contents and materials (what would have been really difficult to get in a face to face classroom). In conclusion, the absence of certain types of specialized contents in the academic university curricula makes essential to raise new methodologies to save the gap in this area through additional training courses as those analyzed in this paper. Thus, our experience opens a debate on the appropriateness of implementing online training in relation to the face to face training in constructive content subjects and, especially, presents a new scheme, not without controversy, for the curriculum design.