3 resultados para Program Synthesis
em Universidad de Alicante
Resumo:
Inexpensive and commercially available nano-powder magnetite is an excellent catalyst for the addition of acid chlorides to internal and terminal alkynes, yielding the corresponding chlorovinyl ketones in good yields. The process has been applied to the synthesis of 5-chloro-4-arylcyclopent-2-enones, 3-aryl-1H-cyclopenta[a]naphthalen-1-ones, and (E)-3-alkylidene-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ones, just by changing the nature of the starting acid chloride or the alkyne. All tested processes elapse with an acceptable or excellent regio- and stereo-selectivity. Moreover, the use of the iridium impregnated on magnetite catalyst permits the integration of the chloroacylation process with a second dehydrochlorination–annulation process to yield, in one-pot, 1-aryl-2,4-dialkylfurans in good yields, independently of the nature of the starting reagents, and including the heteroaromatic ones.
Resumo:
Heck-arylation/cyclization was achieved using heterogeneous palladium(II) oxide impregnated on magnetite catalyst (2.5 mol%) with a lower catalyst loading than that reported for similar processes. Ethanol was used as a non-toxic and bio-renewable solvent. Good yields were afforded using a broad range of substrates (40–98%). The catalyst could be partially recycled, and analyses confirmed the almost total reduction of palladium(II) oxide to palladium(0) as well as the iodine poissoning effect, which is the main barrier to complete recyclability.
Resumo:
The synthesis of different 3,5-disubstituted isoxazoles and related isoxazolines using choline chloride:urea as deep eutectic solvent (DES) in a one-pot three step reaction has been accomplished successfully. The use of highly nucleophilic functionalized DES did not affect the process where highly electrophilic reagents or intermediates are involved. The presence of DES showed to be essential since the reaction in absence of this media did not proceed. The DES media could be reused up to five times without a detrimental effect on the yield of the reaction. To exemplify the synthetic potential of this methodology, the reaction was scaled up to the gram scale without any noticeable problem. Finally, different isoxazoles were easily transformed into β-aminoenones.