5 resultados para Production design
em Universidad de Alicante
Resumo:
In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.
Resumo:
Glutaraldehyde is one of the most widely used reagents in the design of biocatalysts. It is a powerful crosslinker, able to react with itself, with the advantages that this may bring forth. In this review, we intend to give a general vision of its potential and the precautions that must be taken when using this effective reagent. First, the chemistry of the glutaraldehyde/amino reaction will be commented upon. This reaction is still not fully clarified, but it seems to be based on the formation of 6-membered heterocycles formed by 5 C and one O. Then, we will discuss the production of intra- and inter-molecular enzyme crosslinks (increasing enzyme rigidity or preventing subunit dissociation in multimeric enzymes). Special emphasis will be placed on the preparation of cross-linked enzyme aggregates (CLEAs), mainly in enzymes that have low density of surface reactive groups and, therefore, may be problematic to obtain a final solid catalyst. Next, we will comment on the uses of glutaraldehyde in enzymes previously immobilized on supports. First, the treatment of enzymes immobilized on supports that cannot react with glutaraldehyde (only inter and intramolecular cross-linkings will be possible) to prevent enzyme leakage and obtain some enzyme stabilization via cross-linking. Second, the cross-linking of enzymes adsorbed on aminated supports, where together with other reactions enzyme/support crosslinking is also possible; the enzyme is incorporated into the support. Finally, we will present the use of aminated supports preactivated with glutaraldehyde. Optimal glutaraldehyde modifications will be discussed in each specific case (one or two glutaraldehyde molecules for amino group in the support and/or the protein). Using preactivated supports, the heterofunctional nature of the supports will be highlighted, with the drawbacks and advantages that the heterofunctionality may have. Particular attention will be paid to the control of the first event that causes the immobilization depending on the experimental conditions to alter the enzyme orientation regarding the support surface. Thus, glutaraldehyde, an apparently old fashioned reactive, remains the most widely used and with broadest application possibilities among the compounds used for the design of biocatalyst.
Resumo:
The footwear industry is a traditional craft sector, where technological advances are difficult to implement owing to the complexity of the processes being carried out, and the level of precision demanded by most of them. The shoe last joining operation is one clear example, where two halves from different lasts are put together, following a specifically traditional process, to create a new one. Existing surface joining techniques analysed in this paper are not well adapted to shoe last design and production processes, which makes their implementation in the industry difficult. This paper presents an alternative surface joining technique, inspired by the traditional work of lastmakers. This way, lastmakers will be able to easily adapt to the new tool and make the most out of their know-how. The technique is based on the use of curve networks that are created on the surfaces to be joined, instead of using discrete data. Finally, a series of joining tests are presented, in which real lasts were successfully joined using a commercial last design software. The method has shown to be valid, efficient, and feasible within the sector.
Resumo:
This article reviews the evolution of the concept of culture industries, when neither industry nor culture themselves are today what they were at the time when the term was coined. It attempts to explain the dilution of the term into more nebulous terms (“leisure industries,” “entertainment industries” or “creative industries”) and suggests new challenges for the research on culture industries. What is at stake is no longer an application of a Fordist production to culture, a one-directional mass communication and a mediation by experts, but rather: (1) a cultural experience which is no longer clearly separated from other activities (leisure in general, consumption and even work); (2) the communicative explosion of all industrial production in a media environment, where industrialized symbolic products are mixed with culturalized industrial products; and (3) the empowerment of the recipient, which on one hand ignores the traditional experts and on the other leads to post-productive (recreational and even creative) cultural practices.
Resumo:
In this work we study Forward Osmosis (FO) as an emerging desalination technology, and its capability to replace totally or partially Reverse Osmosis (RO) in order to reduce the great amount of energy required in the current desalination plants. For this purpose, we propose a superstructure that includes both membrane based desalination technologies, allowing the selection of only one of the technologies or a combination of both of them seeking for the optimal configuration of the network. The optimization problem is solved for a seawater desalination plant with a given fresh water production. The results obtained show that the optimal solution combines both desalination technologies to reduce not only the energy consumption but also the total cost of the desalination process in comparison with the same plant but operating only with RO.