2 resultados para Prion Diseases
em Universidad de Alicante
Resumo:
Objective: To know the impact of the Dynesys system on the functional outcomes in patients with spinal degenerative diseases. Summary of background data: Dynesys system has been proposed as an alternative to vertebral fusion for several spinal degenerative diseases. The fact that it has been used in people with different diagnosis criteria using different tools to measure clinical outcomes makes very difficult unifying the results available nowadays. Methods: The data base of Medlars Online International Literature (MEDLINE) via PubMed©, EMBASE©, and the Cochrane Library Plus were reviewed in search of all the studies published until November 2012 in which an operation with Dynesys in patients with spinal degenerative diseases and an evaluation of the results by an analysis of functional outcomes had taken place. No limits were used to article type, date of publication or language. Results: A total of 134 articles were found, 26 of which fulfilled the inclusion criteria after being assessed by two reviewers. All of them were case series, except for a multicenter randomized clinical trial (RCT) and a prospective case-control study. The selected articles made a total of 1507 cases. The most frequent diagnosis were lumbar spinal canal stenosis (LSCS), degenerative disc disease (DDD), degenerative spondylolisthesis (DS) and lumbar degenerative scoliosis (LDS). In cases of lumbar spinal canal stenosis Dynesys was associated to surgical decompression. Several tools to measure the functional disability and general health status were found. Oswestry Disability Index (ODI), the ODI Korean version (K-Odi), Prolo, Sf-36, Sf-12, Roland-Morris disability questionnaire (RMDQ), and the pain Visual Analogue Scale (VAS) were the most used. They showed positive results in all cases series reviewed. In most studies the ODI decreased about 25% (e.g. from a score of 85% to 60%). Better results when dynamic fusion was combined with nerve root decompression were found. Functional outcomes and leg pain scores with Dynesys were statistically non-inferior to posterolateral spinal fusion using autogenous bone. When Dynesys and decompression was compared with posterior interbody lumbar fixation (PLIF) and decompression, differences in ODI and VAS were not statistically significant. Conclusions: In patients with spinal degenerative diseases due to degenerative disc disorders, spinal canal stenosis and degenerative spondylolisthesis, surgery with Dynesys and decompression improves functional outcomes, decreases disability, and reduces back and leg pain. More studies are needed to conclude that dynamic stabilization is better than posterolateral and posterior interbody lumbar fusion. Studies comparing Dynesys with decompression against decompression alone should be done in order to isolate the effect of the dynamic stabilization.
Resumo:
Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.