9 resultados para Preparation of ligands

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comunicación presentada en forma de póster en el "12th Mediterranean Congress of Chemical Engineering", Barcelona (Spain), November 15-18, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comunicación presentada en forma de póster en el "12th Mediterranean Congress of Chemical Engineering", Barcelona (Spain), November 15-18, 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results show that it is possible to activate a low softening point isotropic petroleum pitch, without intermediate pre-treatments, by chemical activation with KOH. The chemical activation is carried out by direct heat treatment of a mixture of the isotropic pitch and KOH. It produces activated carbons (ACs) with micropore volumes as high as 1.12 cm3/g, and BET surface areas around 3000 m2/g. The activating agent/precursor ratios studied (from 1/1 to 4/1; wt./wt.) show, as expected, that increasing the ratio enhances the adsorption characteristics of the resulting AC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preparation of homogeneous CNT coatings in insulating silica capillary tubes is carried out by an innovative electrochemically-assisted method in which the driving force for the deposition is the change in pH inside the confined space between the inner electrode and the capillary walls. This method represents a great advancement in the development of CNT coatings following a simple, cost-effective methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbons with high metal content have been prepared by the pyrolysis of ethylene tar with dissolved metal acetylacetonates (Ti, V, Fe, Co, Ni and Cu) and subsequent activation with KOH of the pitch obtained in pyrolysis. These metal compounds decompose during the pyrolysis of ethylene tar yielding metal nanoparticles formed by metal and/or oxide which are homogeneously distributed in the pitch and remain in the activated carbon, so that the concentration of metal is, in most cases, 4–5 times higher than in the pristine ethylene tar. Since KOH is an effective activating agent, all activated carbons combine a high porosity development with a high metal content. In some of the carbons, such as P2FeA (3.3% Fe, pore volume 1.84 cm3/g, BET surface area 3270 m2/g), there is even an increase in the pore volume when compared to the activated carbon prepared in the same way without metal, in spite of the fact that the metal increases the weight of carbon without contributing to the adsorptive capacity. It seems that iron, on the one hand modifies the pyrolysis to give a pitch with larger mesophase content and on the other hand it locally catalyzes carbon gasification with the CO2 produced along the synthesis of the carbon. In addition to its influence on activation, iron promotes the formation of graphitic carbon fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmentally friendly sulfonated black carbon (BC) catalysts were prepared from biodiesel waste, glycerol. These black carbons (BCs) contain a high amount of acidic groups, mainly sulfonated and oxygenated groups. Furthermore, these catalysts show a high catalytic activity in the glycerol etherification reaction with tert-butyl alcohol, the activity being larger for the sample prepared with a higher glycerol:sulfuric acid ratio (1:3). The yield for mono-tert-butyl glycerol (MTBG), di-tert-butyl glycerol (DTBG) and tri-tert-butyl-glycerol (TTBG) were very similar to those obtained using a commercial resin, Amberlyst-15. Furthermore, experimental results show that the carbon with the lowest acidic surface group content, BC prepared in minor glycerol:sulfuric acid ratio (10:1), can be chemically treated after carbonization to achieve an improved catalytic activity. The activity of all BCs is high and very similar, about 50% and 20% for the MTBG and DTBG + TTBG, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With global warming becoming one of the main problems our society is facing nowadays, there is an urgent demand to develop materials suitable for CO2 storage as well as for gas separation. Within this context, hierarchical porous structures are of great interest for in-flow applications because of the desirable combination of an extensive internal reactive surface along narrow nanopores with facile molecular transport through broad “highways” leading to and from these pores. Deep eutectic solvents (DESs) have been recently used in the synthesis of carbon monoliths exhibiting a bicontinuous porous structure composed of continuous macroporous channels and a continuous carbon network that contains a certain microporosity and provides considerable surface area. In this work, we have prepared two DESs for the preparation of two hierarchical carbon monoliths with different compositions (e.g., either nitrogen-doped or not) and structure. It is worth noting that DESs played a capital role in the synthesis of hierarchical carbon monoliths not only promoting the spinodal decomposition that governs the formation of the bicontinuous porous structure but also providing the precursors required to tailor the composition and the molecular sieve structure of the resulting carbons. We have studied the performance of these two carbons for CO2, N2, and CH4 adsorption in both monolithic and powdered form. We have also studied the selective adsorption of CO2 versus CH4 in equilibrium and dynamic conditions. We found that these materials combined a high CO2-sorption capacity besides an excellent CO2/N2 and CO2/CH4 selectivity and, interestingly, this performance was preserved when processed in both monolithic and powdered form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of imidazolium and benzimidazolium salts with hydroxyl or carboxylate functions has been achieved using straightforward synthetic pathways. These salts in combination with palladium(II) acetate give active catalytic systems for Suzuki reaction. A comparative study has been performed, which has revealed that both the heterocycle and the functional group are important for the catalytic activity and stability of the catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel procedure for the preparation of solid Pd(II)-based catalysts consisting of the anchorage of designed Pd(II)-complexes on an activated carbon (AC) surface is reported. Two molecules of the Ar–S–F type (where Ar is a plane-pyrimidine moiety, F a Pd(II)-ligand and S an aliphatic linker) differing in F, were grafted on AC by π–π stacking of the Ar moiety and the graphene planes of the AC, thus favouring the retaining of the metal-complexing ability of F. Adsorption of Pd(II) by the AC/Ar–S–F hybrids occurs via Pd(II)-complexation by F. After deep characterization, the catalytic activities of the AC/Ar–S–F/Pd(II) hybrids on the hydrogenation of 1-octene in methanol as a catalytic test were evaluated. 100% conversion to n-octane at T = 323.1 K and P = 15 bar, was obtained with both catalysts and most of Pd(II) was reduced to Pd(0) nanoparticles, which remained on the AC surface. Reusing the catalysts in three additional cycles reveals that the catalyst bearing the F ligand with a larger Pd-complexing ability showed no loss of activity (100% conversion to n-octane) which is assigned to its larger structural stability. The catalyst with the weaker F ligand underwent a progressive loss of activity (from 100% to 79% in four cycles), due to the constant aggregation of the Pd(0) nanoparticles. Milder conditions, T = 303.1 K and P = 1.5 bar, prevent the aggregation of the Pd(0) nanoparticles in this catalyst allowing the retention of the high catalytic efficiency (100% conversion) in four reaction cycles.