1 resultado para Prediction of occupational success.
em Universidad de Alicante
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (10)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (98)
- Boston University Digital Common (2)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (118)
- CentAUR: Central Archive University of Reading - UK (70)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (46)
- Cochin University of Science & Technology (CUSAT), India (9)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (2)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (7)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (12)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (8)
- Indian Institute of Science - Bangalore - Índia (80)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (131)
- Queensland University of Technology - ePrints Archive (112)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (7)
- University of Connecticut - USA (3)
- University of Michigan (3)
- University of Queensland eSpace - Australia (2)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Using a sample of 339 university graduates from the University of Alicante (Spain) three years after completion of their studies, we studied the relationships between general intelligence (GI), personality traits, emotional intelligence (EI), academic performance, and occupational attainment and compared the results of conventional regression analysis with the results obtained from applying regression mixture models. The results reveal the influence of unobserved population heterogeneity (latent class) on the relationship between predictors and criteria and the improvement in the prediction obtained from applying regression mixture models compared to applying a conventional regression model.