3 resultados para Power Series Distribution

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: In this paper the authors aim to show the advantages of using the decomposition method introduced by Adomian to solve Emden's equation, a classical non‐linear equation that appears in the study of the thermal behaviour of a spherical cloud and of the gravitational potential of a polytropic fluid at hydrostatic equilibrium. Design/methodology/approach: In their work, the authors first review Emden's equation and its possible solutions using the Frobenius and power series methods; then, Adomian polynomials are introduced. Afterwards, Emden's equation is solved using Adomian's decomposition method and, finally, they conclude with a comparison of the solution given by Adomian's method with the solution obtained by the other methods, for certain cases where the exact solution is known. Findings: Solving Emden's equation for n in the interval [0, 5] is very interesting for several scientific applications, such as astronomy. However, the exact solution is known only for n=0, n=1 and n=5. The experiments show that Adomian's method achieves an approximate solution which overlaps with the exact solution when n=0, and that coincides with the Taylor expansion of the exact solutions for n=1 and n=5. As a result, the authors obtained quite satisfactory results from their proposal. Originality/value: The main classical methods for obtaining approximate solutions of Emden's equation have serious computational drawbacks. The authors make a new, efficient numerical implementation for solving this equation, constructing iteratively the Adomian polynomials, which leads to a solution of Emden's equation that extends the range of variation of parameter n compared to the solutions given by both the Frobenius and the power series methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The documentary is available in Portuguese at the following link: http://hdl.handle.net/10045/17580

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose. To validate clinically a new method for estimating the corneal power (P,) using a variable keratometric index (nkadj) in eyes with previous laser refractive surgery. Setting. University of Alicante and Medimar International Hospital (Oftalmar), Alicante, (Spain). Design. Retrospective case series. Methods. This retrospective study comprised 62 eyes of 62 patients that had undergone myopic LASIK surgery. An algorithm for the calculation of 11kadj was used for the estimation of the adjusted keratometric corneal power (Pkadj). This value was compared with the classical keratometric corneal power (Pk), the True Net Power (TNP), and the Gaussian corneal power (PcGauss). Likewise, Pkadj was compared with other previously described methods. Results. Differences between PcGauss and P, values obtained with all methods evaluated were statistically significant (p < 0.01). Differences between Pkadj and PcGauss were in the limit of clinical significance (p < 0.01, loA [ - 0.33,0.60] D). Differences between Pkadj and TNP were not statistically and clinically significant (p = 0.319, loA [- 0.50,0.44] D). Differences between Pkadj and previously described methods were statistically significant (p < 0.01), except with PcHaigisL (p = 0.09, loA [ - 0.37,0.29] D). Conclusion. The use of the adjusted keratometric index (nkadj) is a valid method to estimate the central corneal power in corneas with previous myopic laser refractive surgery, providing results comparable to PcHaigisL.