5 resultados para Potential materials

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work refers to clay–graphene nanomaterials prepared by a green way using caramel from sucrose and two types of natural clays (montmorillonite and sepiolite) as precursors, with the aim of evaluating their potential use in hydrogen storage. The impregnation of the clay substrates by caramel in aqueous media, followed by a thermal treatment in the absence of oxygen of these clay–caramel intermediates gives rise to graphene-like materials, which remain strongly bound to the silicate support. The nature of the resulting materials was characterized by different techniques such as XRD, Raman spectroscopy and TEM, as well as by adsorption isotherms of N2, CO2 and H2O. These carbon–clay nanocomposites can act as adsorbents for hydrogen storage, achieving, at 298 K and 20 MPa, over 0.1 wt% of hydrogen adsorption excess related to the total mass of the system, and a maximum value close to 0.4 wt% of hydrogen specifically related to the carbon mass. The very high isosteric heat for hydrogen sorption determined from adsorption isotherms at different temperatures (14.5 kJ mol−1) fits well with the theoretical values available for hydrogen storage on materials that show a strong stabilization of the H2 molecule upon adsorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hierarchical porous carbon materials prepared by the direct carbonization of lignin/zeolite mixtures and the subsequent basic etching of the inorganic template have been electrochemically characterized in acidic media. These lignin-based templated carbons have interesting surface chemistry features, such as a variety of surface oxygen groups and also pyridone and pyridinic groups, which results in a high capacitance enhancement compared to petroleum-pitch-based carbons obtained by the same procedure. Furthermore, they are easily electro-oxidized in a sulfuric acid electrolyte under positive polarization to produce a large amount of surface oxygen groups that boosts the pseudocapacitance. The lignin-based templated carbons showed a specific capacitance as high as 250 F g−1 at 50 mA g−1, with a capacitance retention of 50 % and volumetric capacitance of 75 F cm−3 at current densities higher than 20 A g−1 thanks to their suitable porous texture. These results indicate the potential use of inexpensive biomass byproducts, such as lignin, as carbon precursors in the production of hierarchical carbon materials for electrodes in electrochemical capacitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

H– and Na–saponite supports have been prepared by several synthesis approaches. 5% Cu/saponite catalysts have been prepared and tested for soot combustion in a NOx + O2 + N2 gas flow and with soot and catalyst mixed in loose contact mode. XRD, FT-IR, N2 adsorption and TEM characterization results revealed that the use of either surfactant or microwaves during the synthesis led to delamination of the saponite support, yielding high surface area and small crystallite size materials. The degree of delamination affected further copper oxide dispersion and soot combustion capacity of the Cu/saponite catalysts. All Cu/saponite catalysts were active for soot combustion, and the NO2-assisted mechanism seemed to prevail. The best activity was achieved with copper oxide supported on a Na–saponite prepared at pH 13 and with surfactant. This best activity was attributed to the efficient copper oxide dispersion on the high surface area delaminated saponite (603 m2 g−1) and to the presence of Na. Copper oxide reduction in H2-TPR experiments occurred at lower temperature for the Na-containing catalysts than for the H-containing counterparts, and all Cu/Na–saponite catalysts were more active for soot combustion than the corresponding Cu/H–saponite catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many approaches to mesoporous zeolites have been reported. The preparation of mesoporous zeolite Y, as the most widely used zeolite in catalysis, its properties, and its application in fluid catalytic cracking (FCC) and hydrocracking are reviewed. Finally, the scale-up and use of mesostrutured zeolite Y on an industrial scale are described, as the first commercial application of hierarchical zeolites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On a global level the population growth and increase of the middle class lead to a growing demand on material resources. The built environment has an enormous impact on this scarcity. In addition, a surplus of construction and demolition waste is a common problem. The construction industry claims to recycle 95% of this waste but this is in fact mainly downcycling. Towards the circular economy, the quality of reuse becomes of increasing importance. Buildings are material warehouses that can contribute to this high quality reuse. However, several aspects to achieve this are unknown and a need for more insight into the potential for high quality reuse of building materials exists. Therefore an instrument has been developed that determines the circularity of construction waste in order to maximise high quality reuse. The instrument is based on three principles: ‘product and material flows in the end of life phase’, ‘future value of secondary materials and products’ and ‘the success of repetition in a new life cycle’. These principles are further divided into a number of criteria to which values and weighting factors are assigned. A degree of circularity can then be determined as a percentage. A case study for a typical 70s building is carried out. For concrete, the circularity is increased from 25% to 50% by mapping out the potential for high quality reuse. During the development of the instrument it was clarified that some criteria are difficult to measure. Accurate and reliable data are limited and assumptions had to be made. To increase the reliability of the instrument, experts have reviewed the instrument several times. In the long-term, the instrument can be used as a tool for quantitative research to reduce the amount of construction and demolition waste and contribute to the reduction of raw material scarcity.