2 resultados para Population data

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objetivo: Evaluar la variación espacial de la exposición a dióxido de nitrógeno (NO2) en la ciudad de Valencia y su relación con la privación socioeconómica y la edad. Métodos: La población por sección censal (SC) procede del Instituto Nacional de Estadística. Los niveles de NO2 se midieron en 100 puntos del área de estudio, mediante captadores pasivos, en tres campañas entre 2002 y 2004. Se utilizó regresión por usos del suelo (LUR) para obtener el mapa de los niveles de NO2. Las predicciones del LUR se compararon con las proporcionadas por: a) el captador más cercano de la red de vigilancia, b) el captador pasivo más cercano, c) el conjunto de captadores en un entorno y d) kriging. Se asignaron niveles de contaminación para cada SC. Se analizó la relación entre los niveles de NO2, un índice de privación con cinco categorías y la edad (≥65 años). Resultados: El modelo LUR resultó el método más preciso. Más del 99% de la población superó los niveles de seguridad propuestos por la Organización Mundial de la Salud. Se encontró una relación inversa entre los niveles de NO2 y el índice de privación (β = –2,01 μg/m3 en el quintil de mayor privación respecto al de menor, IC95%: –3,07 a –0,95), y una relación directa con la edad (β = 0,12 μg/m3 por incremento en unidad porcentual de población ≥65 años, IC95%: 0,08 a 0,16). Conclusiones: El método permitió obtener mapas de contaminación y describir la relación entre niveles de NO2 y características sociodemográficas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to confidentiality considerations, the microdata available from the 2011 Spanish Census have been codified at a provincial (NUTS 3) level except when the municipal (LAU 2) population exceeds 20,000 inhabitants (a requirement that is met by less than 5% of all municipalities). For the remainder of the municipalities within a given province, information is only provided for their classification in wide population intervals. These limitations, hampering territorially-focused socio-economic analyses, and more specifically, those related to the labour market, are observed in many other countries. This article proposes and demonstrates an automatic procedure aimed at delineating a set of areas that meet such population requirements and that may be used to re-codify the geographic reference in these cases, thereby increasing the territorial detail at which individual information is available. The method aggregates municipalities into clusters based on the optimisation of a relevant objective function subject to a number of statistical constraints, and is implemented using evolutionary computation techniques. Clusters are defined to fit outer boundaries at the level of labour market areas.