9 resultados para Polymer-carbon, polymer, nanotube, science
em Universidad de Alicante
Resumo:
The decomposition of azodicarbonamide, used as foaming agent in PVC—plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min−1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g−1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol−1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse.
Resumo:
In the present work, the electrochemical properties of single-walled carbon nanotube buckypapers (BPs) were examined in terms of carbon nanotubes nature and preparation conditions. The performance of the different free-standing single wall carbon nanotube sheets was evaluated via cyclic voltammetry of several redox probes in aqueous electrolyte. Significant differences are observed in the electron transfer kinetics of the buckypaper-modified electrodes for both the outer- and inner-sphere redox systems. These differences can be ascribed to the nature of the carbon nanotubes (nanotube diameter, chirality and aspect ratio), surface oxidation degree and type of functionalities. In the case of dopamine, ferrocene/ferrocenium, and quinone/hydroquinone redox systems the voltammetric response should be thought as a complex contribution of different tips and sidewall domains which act as mediators for the electron transfer between the adsorbate species and the molecules in solution. In the other redox systems only nanotube ends are active sites for the electron transfer. It is also interesting to point out that a higher electroactive surface area not always lead to an improvement in the electron transfer rate of various redox systems. In addition, the current densities produced by the redox reactions studied here are high enough to ensure a proper electrochemical signal, which enables the use of BPs in sensing devices.
Resumo:
The change in the carbonaceous skeleton of nanoporous carbons during their activation has received limited attention, unlike its counterpart process in the presence of an inert atmosphere. Here we adopt a multi-method approach to elucidate this change in a poly(furfuryl alcohol)-derived carbon activated using cyclic application of oxygen saturation at 250 °C before its removal (with carbon) at 800 °C in argon. The methods used include helium pycnometry, synchrotron-based X-ray diffraction (XRD) and associated radial distribution function (RDF) analysis, transmission electron microscopy (TEM) and, uniquely, electron energy-loss spectroscopy spectrum-imaging (EELS-SI), electron nanodiffraction and fluctuation electron microscopy (FEM). Helium pycnometry indicates the solid skeleton of the carbon densifies during activation from 78% to 93% of graphite. RDF analysis, EELS-SI, and FEM all suggest this densification comes through an in-plane growth of sp2 carbon out to the medium range without commensurate increase in order normal to the plane. This process could be termed ‘graphenization’. The exact way in which this process occurs is not clear, but TEM images of the carbon before and after activation suggest it may come through removal of the more reactive carbon, breaking constraining cross-links and creating space that allows the remaining carbon material to migrate in an annealing-like process.
Resumo:
In the present work we study the hydroxide activation (NaOH and KOH) of phenol-formaldehyde resin derived CNFs prepared by a polymer blend technique to prepare highly porous activated carbon nanofibres (ACNFs). Morphology and textural characteristics of these ACNFs were studied and their hydrogen storage capacities at 77 K (at 0.1 MPa and at high pressures up to 4 MPa) were assessed, and compared, with reported capacities of other porous carbon materials. Phenol-formaldehyde resin derived carbon fibres were successfully activated with these two alkaline hydroxides rendering highly microporous ACNFs with reasonable good activation process yields up to 47 wt.% compared to 7 wt.% yields from steam activation for similar surface areas of 1500 m2/g or higher. These nano-sized activated carbons present interesting H2 storage capacities at 77 K which are comparable, or even higher, to other high quality microporous carbon materials. This observation is due, in part, to their nano-sized diameters allowing to enhance their packing densities to 0.71 g/cm3 and hence their resulting hydrogen storage capacities.
Resumo:
The inner surface of fused-silica capillaries has been coated with a dense/homogeneous coating of commercial multi-wall carbon nanotubes (MWCNTs) using a stable ink as deposit precursor. Solubilization of the MWCNTs was achieved in water/ethanol/dimethylformamide by the action of a surfactant, which can switch between a neutral or an ionic form depending on the pH of the medium, which thus becomes the driving force for the entire deposition process. Careful control of the experimental conditions has allowed us to selectively deposit CNTs on the inner surface of insulating silica capillaries by a simple, reproducible, and easily adaptable method.
Resumo:
We report a multi-wavelength Raman spectroscopy study of the structural changes along the thermal annealing pathway of a poly(furfuryl alcohol) (PFA) derived nanoporous carbon (NPC). The Raman spectra were deconvoluted utilizing G, D, D′, A and TPA bands. The appropriateness of these deconvolutions was confirmed via recovery of the correct dispersive behaviours of these bands. It is proposed that the ID/IG ratio is composed of two parts: one associated with the extent of graphitic crystallites (the Tuinstra–Koenig relationship), and a second related to the inter-defect distance. This model was used to successfully determine the variation of the in-plane size and intra-plane defect density along the annealing pathway. It is proposed that the NPC skeleton evolves along the annealing pathway in two stages: below 1600 °C it was dominated by a reduction of in-plane defects with a minor crystallite growth, and above this temperature growth of the crystallites accelerates as the in-plane defect density approaches zero. A significant amount of transpolyacetylene (TPA)-like structures was found to be remaining even at 2400 °C. These may be responsible for resistance to further graphitization of the PFA-based carbon at higher temperatures.
Resumo:
Hydrogenated amorphous carbon (a-C:H) films were grown on a poly(lactic acid) (PLA) substrate by means of a radiofrequency plasma-enhanced chemical vapour deposition (rf-PECVD) technique with different deposition times (5, 20 and 40 min). The main goal of this treatment was to increase the barrier properties of PLA, maintaining its original transparency and colour as well as controlling interactions with food simulants for packaging applications. Morphological, chemical, and mechanical properties of PLA/a-C:H systems were evaluated while permeability and overall migration tests were performed in order to determine the effect of the plasma treatment on the gas-barrier properties of PLA films and their application in food packaging. Morphological results suggested a good adhesion of the deposited layers onto the polymer surface and the samples treated for 5 and 20 min only slightly darkened the PLA film. X-ray photoelectron spectroscopy revealed that the structural properties of the carbon layer deposited onto the PLA film depend on the exposure time. PLA/a-C:H system treated for 5 min showed the highest barrier properties, while none of the studied samples exceeded the migration limit established by the current legislation, suggesting the suitability of these materials in packaging applications.
Resumo:
The electroassisted encapsulation of Single-Walled Carbon Nanotubes was performed into silica matrices (SWCNT@SiO2). This material was used as the host for the potentiostatic growth of polyaniline (PANI) to yield a hybrid nanocomposite electrode, which was then characterized by both electrochemical and imaging techniques. The electrochemical properties of the SWCNT@SiO2-PANI composite material were tested against inorganic (Fe3+/Fe2+) and organic (dopamine) redox probes. It was observed that the electron transfer constants for the electrochemical reactions increased significantly when a dispersion of either SWCNT or PANI was carried out inside of the SiO2 matrix. However, the best results were obtained when polyaniline was grown through the pores of the SWCNT@SiO2 material. The enhanced reversibility of the redox reactions was ascribed to the synergy between the two electrocatalytic components (SWCNTs and PANI) of the composite material.
Resumo:
Functionalized carbon nanotubes (CNTs) using three aminobenzene acids with different functional groups (carboxylic, sulphonic, phosphonic) in para position have been synthesized through potentiodynamic treatment in acid media under oxidative conditions. A noticeable increase in the capacitance for the functionalized carbon nanotubes mainly due to redox processes points out the formation of an electroactive polymer thin film on the CNTs surface along with covalently bonded functionalities. The CNTs functionalized using aminobenzoic acid rendered the highest capacitance values and surface nitrogen content, while the presence of sulfur and/or phosphorus groups in the aminobenzene structure yielded a lower functionalization degree. The oxygen reduction reaction (ORR) activity of the functionalized samples was similar to that of the parent CNTs, independently of the functional group present in the aminobenzene acid. Interestingly, a heat treatment in N2 atmosphere with a very low O2 concentration (3125 ppm) at 800 °C of the CNTs functionalized with aminobenzoic acid produced a material with high amounts of surface oxygen and nitrogen groups (12 and 4% at., respectively), that seem to modulate the electron-donor properties of the resulting material. The onset potential and limiting current for ORR was enhanced for this material. These are promising results that validates the use of electrochemistry for the synthesis of novel N-doped electrocatalysts for ORR in combination with adequate heat treatments.