3 resultados para Polyacrylic acid polymers

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M–Na) and copper cation (M–Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M–Cu changes depending on the inorganic cation and the polymer intercalated in the M–Cu structure. TGA analyses reveal that polymer/M–Cu composites is less stable than M–Cu. The conductivity of the composites is found to be 103 times higher than that for M–Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV–Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(lactic acid) PLA, and poly(hydroxybutyrate) PHB, blends were processed as films and characterized for their use in food packaging. PLA was blended with PHB to enhance the crystallinity. Therefore, PHB addition strongly increased oxygen barrier while decreased the wettability. Two different environmentally-friendly plasticizers, poly(ethylene glycol) (PEG) and acetyl(tributyl citrate) (ATBC), were added to these blends to increase their processing performance, while improving their ductile properties. ATBC showed higher plasticizer efficiency than PEG directly related to the similarity solubility parameters between ATBC and both biopolymers. Moreover, ATBC was more efficiently retained to the polymer matrix during processing than PEG. PLA–PHB–ATBC blends were homogeneous and transparent blends that showed promising performance for the preparation of films by a ready industrial process technology for food packaging applications, showing slightly amber color, improved elongation at break, enhanced oxygen barrier and decreased wettability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of fully bio-based and biodegradable materials for massive applications, such as food packaging, is an emerging tendency in polymer research. But the formulations proposed in this way should preserve or even increase the functional properties of conventional polymers, such as transparency, homogeneity, mechanical properties and low migration of their components to foodstuff. This is not always trivial, in particular when brittle biopolymers, such as poly(lactic acid) (PLA), are considered. In this work the formulation of innovative materials based on PLA modified with highly compatible plasticizers, i.e. oligomers of lactic acid (OLAs) is proposed. Three different synthesis conditions for OLAs were tested and the resulting additives were further blended with commercial PLA obtaining transparent and ductile materials, able for films manufacturing. These materials were tested in their structural, thermal and tensile properties and the best formulation among the three materials was selected. OLA with molar mass (Mn) around 1,000 Da is proposed as an innovative and fully compatible and biodegradable plasticizer for PLA, able to replace conventional plasticizers (phthalates, adipates or citrates) currently used for films manufacturing in food packaging applications.