3 resultados para Poly(ethylene terephthalate)

em Universidad de Alicante


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(lactic acid) PLA, and poly(hydroxybutyrate) PHB, blends were processed as films and characterized for their use in food packaging. PLA was blended with PHB to enhance the crystallinity. Therefore, PHB addition strongly increased oxygen barrier while decreased the wettability. Two different environmentally-friendly plasticizers, poly(ethylene glycol) (PEG) and acetyl(tributyl citrate) (ATBC), were added to these blends to increase their processing performance, while improving their ductile properties. ATBC showed higher plasticizer efficiency than PEG directly related to the similarity solubility parameters between ATBC and both biopolymers. Moreover, ATBC was more efficiently retained to the polymer matrix during processing than PEG. PLA–PHB–ATBC blends were homogeneous and transparent blends that showed promising performance for the preparation of films by a ready industrial process technology for food packaging applications, showing slightly amber color, improved elongation at break, enhanced oxygen barrier and decreased wettability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transitions and reactions involved in the thermal processing of binary mixtures of polyethylene and poly(ethylene-co-vinyl acetate) copolymers with different concentrations of a foaming agent (azodicarbonamide) were studied using differential scanning calorimetry (DSC). The effect of ZnO as a kicker also was discussed. The temperature at the maximum rate and the heat evolved were measured for all the processes—melting, transitions, and reactions—all the mixtures prepared were measured and compared. Azodicarbonamide decomposed differently depending on the polymeric matrix. These data can be very useful for the plastic processing industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The disintegration under composting conditions of films based on poly(lactic acid)–poly(hydroxybutyrate) (PLA–PHB) blends and intended for food packaging was studied. Two different plasticizers, poly(ethylene glycol) (PEG) and acetyl-tri-n-butyl citrate (ATBC), were used to limit the inherent brittleness of both biopolymers. Neat PLA, plasticized PLA and PLA–PHB films were processed by melt-blending and compression molding and they were further treated under composting conditions in a laboratory-scale test at 58 ± 2 °C. Disintegration levels were evaluated by monitoring their weight loss at different times: 0, 7, 14, 21 and 28 days. Morphological changes in all formulations were followed by optical and scanning electron microscopy (SEM). The influence of plasticizers on the disintegration of PLA and PLA–PHB blends was studied by evaluating their thermal and nanomechanical properties by thermogravimetric analysis (TGA) and the nanoindentation technique, respectively. Meanwhile, structural changes were followed by Fourier transformed infrared spectroscopy (FTIR). The ability of PHB to act as nucleating agent in PLA–PHB blends slowed down the PLA disintegration, while plasticizers speeded it up. The relationship between the mesolactide to lactide forms of PLA was calculated with a Pyrolysis–Gas Chromatography–Mass Spectrometry device (Py–GC/MS), revealing that the mesolactide form increased during composting.