2 resultados para Polarizing optical microscopy
em Universidad de Alicante
Resumo:
Edible active films based on sodium caseinate (SC) and calcium caseinate (CC) plasticized with glycerol (G) at three different concentrations and carvacrol (CRV) as active agent were prepared by solvent casting. Transparent films were obtained and their surfaces were analysed by optical microscopy and scanning electron microscopy (SEM). The influence of the addition of three different plasticizer concentrations was studied by determining tensile properties, while Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to evaluate the structural and thermal behavior of such films. The addition of glycerol resulted in a reduction in the elastic modulus and tensile strength, while some increase in the elongation at break was observed. In general terms, SC films showed flexibility higher than the corresponding CC counterparts. In addition, the presence of carvacrol caused further improvements in ductile properties suggesting the presence of stronger interactions between the protein matrix and glycerol, as it was also observed in thermal degradation studies. FTIR spectra of all films showed the characteristic bands and peaks corresponding to proteins as well as to primary and secondary alcohols. In summary, the best results regarding mechanical and structural properties for caseinates-based films containing carvacrol were found for the formulations with high glycerol concentrations.
Resumo:
The volume size of a converging wave, which plays a relevant role in image resolution, is governed by the wavelength of the radiation and the numerical aperture (NA) of the wavefront. We designed an ultrathin (λ/8 width) curved metasurface that is able to transform a focused field into a high-NA optical architecture, thus boosting the transverse and (mainly) on-axis resolution. The elements of the metasurface are metal-insulator subwavelength gratings exhibiting extreme anisotropy with ultrahigh index of refraction for TM polarization. Our results can be applied to nanolithography and optical microscopy.