2 resultados para Planing hulls

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theory and methods of linear algebra are a useful alternative to those of convex geometry in the framework of Voronoi cells and diagrams, which constitute basic tools of computational geometry. As shown by Voigt and Weis in 2010, the Voronoi cells of a given set of sites T, which provide a tesselation of the space called Voronoi diagram when T is finite, are solution sets of linear inequality systems indexed by T. This paper exploits systematically this fact in order to obtain geometrical information on Voronoi cells from sets associated with T (convex and conical hulls, tangent cones and the characteristic cones of their linear representations). The particular cases of T being a curve, a closed convex set and a discrete set are analyzed in detail. We also include conclusions on Voronoi diagrams of arbitrary sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introducing an appropriate inclusion between approximate minima associated with two nonconvex functions, we derive explicit relations between the closed convex hulls of these functions. The formula we obtain goes beyond the so-called epi-pointed property of functions which is usually concerned with such a topic.