7 resultados para Piecewise linear systems with two zones
em Universidad de Alicante
Resumo:
This paper presents the results of a liquid–liquid equilibrium data correlation for 11 ternary systems which have not been previously fitted using the NRTL model or, when they have, the results presented in the literature are inconsistent with the experimental behavior of the system. These ternary systems include mixtures with one or two partially miscible pairs. During the correlation process, new restrictions were imposed on the values for the NRTL binary parameters to ensure correct prediction of the total or partial miscibility for the binary pairs involved. In addition, topological concepts related to the Gibbs stability test have been applied in order to validate the results in the whole range of compositions.
Resumo:
In this paper we describe an hybrid algorithm for an even number of processors based on an algorithm for two processors and the Overlapping Partition Method for tridiagonal systems. Moreover, we compare this hybrid method with the Partition Wang’s method in a BSP computer. Finally, we compare the theoretical computation cost of both methods for a Cray T3D computer, using the cost model that BSP model provides.
Resumo:
This paper deals with stability properties of the feasible set of linear inequality systems having a finite number of variables and an arbitrary number of constraints. Several types of perturbations preserving consistency are considered, affecting respectively, all of the data, the left-hand side data, or the right-hand side coefficients.
Resumo:
This paper presents a multilayered architecture that enhances the capabilities of current QA systems and allows different types of complex questions or queries to be processed. The answers to these questions need to be gathered from factual information scattered throughout different documents. Specifically, we designed a specialized layer to process the different types of temporal questions. Complex temporal questions are first decomposed into simple questions, according to the temporal relations expressed in the original question. In the same way, the answers to the resulting simple questions are recomposed, fulfilling the temporal restrictions of the original complex question. A novel aspect of this approach resides in the decomposition which uses a minimal quantity of resources, with the final aim of obtaining a portable platform that is easily extensible to other languages. In this paper we also present a methodology for evaluation of the decomposition of the questions as well as the ability of the implemented temporal layer to perform at a multilingual level. The temporal layer was first performed for English, then evaluated and compared with: a) a general purpose QA system (F-measure 65.47% for QA plus English temporal layer vs. 38.01% for the general QA system), and b) a well-known QA system. Much better results were obtained for temporal questions with the multilayered system. This system was therefore extended to Spanish and very good results were again obtained in the evaluation (F-measure 40.36% for QA plus Spanish temporal layer vs. 22.94% for the general QA system).
Resumo:
We address the optimization of discrete-continuous dynamic optimization problems using a disjunctive multistage modeling framework, with implicit discontinuities, which increases the problem complexity since the number of continuous phases and discrete events is not known a-priori. After setting a fixed alternative sequence of modes, we convert the infinite-dimensional continuous mixed-logic dynamic (MLDO) problem into a finite dimensional discretized GDP problem by orthogonal collocation on finite elements. We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP representation of the problem. This modelling framework is illustrated with an optimization problem with implicit discontinuities (diver problem).
Resumo:
In this paper we examine multi-objective linear programming problems in the face of data uncertainty both in the objective function and the constraints. First, we derive a formula for the radius of robust feasibility guaranteeing constraint feasibility for all possible scenarios within a specified uncertainty set under affine data parametrization. We then present numerically tractable optimality conditions for minmax robust weakly efficient solutions, i.e., the weakly efficient solutions of the robust counterpart. We also consider highly robust weakly efficient solutions, i.e., robust feasible solutions which are weakly efficient for any possible instance of the objective matrix within a specified uncertainty set, providing lower bounds for the radius of highly robust efficiency guaranteeing the existence of this type of solutions under affine and rank-1 objective data uncertainty. Finally, we provide numerically tractable optimality conditions for highly robust weakly efficient solutions.
Resumo:
This paper addresses the problem of predicting the critical parameters that characterize thermal runaway in a tubular reactor with wall cooling, introducing a new view of the n-th order kinetics reactions. The paper describes the trajectories of the system in the temperature-(concentration)n plane, and deduces the conditions for the thermal risk.