4 resultados para Physical Chemistry problems advanced gas thermodynamics

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The methodological approach a teacher uses in the competence teaching-learning process determines the way students learn. Knowledge can be acquired from a series of perspectives, mainly: “know-what” (concept), where facts and descriptions of (natural or social) phenomena are pursued; “know-how” (procedure), where methods and procedures for their application are described; and “know-why” (competence), where general principles and laws that explain both the facts and their applications are sought. As all the three cases are interconnected, the boundaries between them are not fully clear and their application uses shared elements. In any case, the depth of student’s acquired competences will be directly affected by the teaching-learning perspective, traditionally aiming to a “know-why” approach for full competence acquisition. In this work, we discuss a suitable teaching-learning methodology for evaluating whether a “know-how”, “know-what” or combined approach seems better for enhancing competence learning in students. We exemplify the method using a selection of formative activities from the Physical Chemistry area in the Grades of Chemistry and Chemical Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competences have become a standard learning outcome in present university education within the European Higher Education Area (EHEA). In this regard, updated tools for their assessment have turned out essential in this new teaching-learning paradigm. Among them, one of the most promising tools is the “learner´s portfolio”, which is based on the gathering and evaluation of a range of evidences from the student, which provides a wider and more realistic view of his/her competence acquisition. Its appropriate use as a formative (continuous) assessment instrument allows a deeper appraisal of student´s learning, provided it does not end up as another summative (final) evaluation tool. In this contribution we propose the use of the portfolio as a unifying assessment tool within a university department (Physical Chemistry), exemplifying how the portfolio could yield both personalized student reports and averaged area reports on competence acquisition. A proposed stepwise protocol is given to organize the individual competence reports and estimate the global competence level following a bottom-up approach (i.e. ranging from the class group, subject, grade, and academic course).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small size of micropores (typically <1 nm) in zeolites causes slow diffusion of reactant and product molecules in and out of the pores and negatively impacts the product selectivity of zeolite based catalysts, for example, fluid catalytic cracking (FCC) catalysts. Size-tailored mesoporosity was introduced into commercial zeolite Y crystals by a simple surfactant-templating post-synthetic mesostructuring process. The resulting mesoporous zeolite Y showed significantly improved product selectivity in both laboratory testing and refinery trials. Advanced characterization techniques such as electron tomography, three-dimensional rotation electron diffraction, and high resolution gas adsorption coupled with hysteresis scanning and density functional theory, unambiguously revealed the intracystalline nature and connectivity of the introduced mesopores. They can be considered as molecular highways that help reactant and product molecules diffuse quickly to and away from the catalytically active sites within the zeolite crystals and, thus, shift the selectivity to favor the production of more of the valuable liquid fuels at reduced yields of coke and unconverted feed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate characterization of the microporous structure in porous solids is of paramount importance for several applications such as energy and gas storage, nanoconfinement reactions, and so on. Among the different techniques for precise textural characterization, high-precision gas adsorption measurement of probe molecules at cryogenic temperatures (e.g., N2 at 77.4 K and Ar at 87.3 K) is the most widely used, after appropriate calibration of the sample holder with a probe gas, which does not experience physisorption processes. Although traditionally helium has been considered not to be adsorbed in porous solids at cryogenic temperatures, here we show that even at 77.4 K (high above its boiling temperature, 4 K) the use of He in the calibration step can give rise to erroneous interpretations when narrow micropores/constrictions are present.