2 resultados para Phase detection

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Internet boom in recent years has increased the interest in the field of plagiarism detection. A lot of documents are published on the Net everyday and anyone can access and plagiarize them. Of course, checking all cases of plagiarism manually is an unfeasible task. Therefore, it is necessary to create new systems that are able to automatically detect cases of plagiarism produced. In this paper, we introduce a new hybrid system for plagiarism detection which combines the advantages of the two main plagiarism detection techniques. This system consists of two analysis phases: the first phase uses an intrinsic detection technique which dismisses much of the text, and the second phase employs an external detection technique to identify the plagiarized text sections. With this combination we achieve a detection system which obtains accurate results and is also faster thanks to the prefiltering of the text.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101–107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14–46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π–π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples.