6 resultados para Penrose limit and pp-wave background
em Universidad de Alicante
Resumo:
Fundamentos: En los ámbitos científico e institucional existe controversia sobre cuándo recomendar la práctica del cribado visual en la población. El objetivo de este trabajo es valorar el nivel de evidencia científica que existe sobre el cribado visual para determinar si las recomendaciones existentes son o no adecuadas. Métodos: Revisión sistemática de artículos científicos consultando las bases de datos MedLine y The Cochranre Library Plus, sin restricción de fecha, en los idiomas español e inglés. Se incluyó literatura gris mediante búsqueda manual. No se hicieron restricciones respecto al tipo de estudio. Se revisaron los abstracts y en los casos necesarios los artículos completos, teniéndose en cuenta finalmente todos los artículos que incluían recomendaciones sobre cribado de agudeza visual y eliminando el resto. Resultados: Se seleccionaron 6 artículos. La mayoría de las recomendaciones realizadas por las sociedades fueron a través de guías de práctica clínica o artículos de opinión. Respecto a los diseños de los artículos científicos localizados hubo 2 ensayos aleatorios controlados, 3 ensayos no controlados y 1 estudio transversal. Conclusiones: Los estudios sobre adultos no permiten determinar que las recomendaciones realizadas por las sociedades científicas tengan una base científica sólida. En el caso de los niños, los estudios y las sociedades científicas no aclaran cuál es la edad más idónea para realizar cribado visual.
Resumo:
Aims. We report near-infrared observations of the supergiant donor to the eclipsing high mass X-ray binary pulsar IGR J18027-2016. We aim to determine its spectral type and measure its radial velocity curve and hence determine the stellar masses of the components. Methods. ESO/VLT observations of the donor utilising the NIR spectrograph ISAAC were obtained in the H and K bands. The multi-epoch H band spectra were cross-correlated with RV templates in order to determine a radial solution for the system. Results. The spectral type of the donor was confirmed as B0-1 I. The radial velocity curve constructed has a semi-amplitude of 23.8 ± 3.1 km s-1. Combined with other measured system parameters, a dynamically determined neutron star mass of 1.4 ± 0.2–1.6 ± 0.3 M⊙ is found. The mass range of the B0-B1 I donor was 18.6 ± 0.8–21.8 ± 2.4 M⊙. These lower and upper limits were obtained under the assumption that the system is viewed edge-on (i = 90° with β = 0.89) for the lower limit and the donor fills its Roche lobe (β = 1 with i = 73.1°) for the upper limit respectively.
Resumo:
This work discusses the results from tests which were performed in order to study the effect of high temperatures in the physical and mechanical properties of a calcarenite (San Julian's stone). Samples, previously heated at different temperatures (from 105 °C to 600 °C), were tested. Non-destructive tests (porosity and ultrasonic wave propagation) and destructive tests (uniaxial compressive strength and slake durability test) were performed over available samples. Furthermore, the tests were carried out under different conditions (i.e. air-cooled and water-cooled) in order to study the effect of the fire off method. The results show that uniaxial compressive strength and elastic parameters (i.e. elastic modulus and Poisson's ratio), decrease as the temperature increases for the tested range of temperatures. A reduction of the uniaxial compressive strength up to 35% and 50% is observed in air-cooled and water-cooled samples respectively when the samples are heated to 600 °C. Regarding the Young's modulus, a fall over 75% and 78% in air-cooled and water-cooled samples respectively is observed. Poisson's ratio also declines up to 44% and 68% with the temperature in air-cooled and water-cooled samples respectively. Slake durability index also exhibits a reduction with temperature. Other physical properties, closely related with the mechanical properties of the stone, are porosity, attenuation and propagation velocity of ultrasonic waves in the material. All exhibit considerable changes with temperature.
Resumo:
Purpose: To evaluate the correlation of the mean curvature and shape factors of both corneal surfaces for different corneal diameters measured with the Scheimpflug photography–based system in keratoconus eyes. Methods: A total of 61 keratoconus eyes of 61 subjects, aged 14 to 64 years, were included in this study. All eyes received a comprehensive ophthalmologic examination including anterior segment and corneal analysis with the Sirius system (CSO): anterior and posterior mean corneal radius for 3, 5, and 7 mm (aKM, pKM), anterior and posterior mean shape factor for 4.5 and 8 mm (ap, pp), central and minimal corneal thickness, and anterior chamber depth. Results: Mean aKM/pKM ratio around 1.20 (range, 0.95–1.48) was found for all corneal diameters (P = 0.24). Weak but significant correlations of this ratio with pachymetric parameters were found (r between −0.28 and −0.34, P < 0.04). The correlation coefficient between aKM and pKM was ≥0.92 for all corneal diameters. A strong and significant correlation was also found between ap and pp (r ≥ 0.86, P < 0.01). The multiple regression analysis revealed that central pKM was significantly correlated with aKM, central corneal thickness, anterior chamber depth, and spherical equivalent (R2 ≥ 0.88, P < 0.01) and that 8 mm pp was significantly correlated with 8 mm ap and age (R2 = 0.89, P < 0.01). Conclusions: Central posterior corneal curvature and shape factor in the keratoconus eye can be consistently predicted from the anterior corneal curvature and shape factor, respectively, in combination with other anatomical and ocular parameters.
Resumo:
The knowledge of thermophysical properties of liquid Co-Si alloys is a key requirement for manufacturing of composite materials by infiltration method. Despite this need, the experimental and predicted property data of the Co-Si system are scarce and often inconsistent between the various sources. In the present work the mixing behaviour of Co-Si melts has been analysed through the study of the concentration dependence of various thermodynamic, surface (surface tension and surface composition) and structural properties (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of the Compound Formation Model (CFM) and Quasi Chemical Approximation for regular solutions (QCA). In addition, the surface tension of the Co22·5Si77.5 (in at%) eutectic alloy, that is proposed to be used as the infiltrant, has been measured by the pendant drop method at temperatures ranging from 1593 to 1773 K. The results obtained were discussed with respect to both, temperature and concentration, and subsequently compared with the model predictions and literature data.
Resumo:
Natural stone has been a popular and reliable building material throughout history appearing in many historic monuments and in more recent buildings. Research into the intrinsic properties of specific stones is important because it gives us a greater understanding of the factors that limit and act on them. This can help prevent serious problems from occurring in our buildings bringing both esthetic benefits and financial savings. To this end, the main objective of this research has been to study the influence of the fabric and the mineral composition of two types of sandstone on their durability. The first is a red continental sandstone from the Buntsandstein Age called “Molinaza Roja”, which is quarried in Montoro (Cordoba). The second is quarried in Ronda (Malaga) and is sold under the trade name of “Arenisca Ronda”. It is a light pink-whitish calcarenite deposited during the Late Tortonian to Late Messinian. We characterized their petrological and petrophysical properties by studying their rock fabrics, porous systems and mechanical properties. In order to obtain a complete vision of the behavior of their rock fabrics, we also carried out two decay tests, the salt crystallization and the freeze–thaw tests. We then measured the effects on the textures of the altered samples during and after the decay tests and we evaluated the changes in the porous system. By comparing the results between intact and altered samples, we found that Arenisca Ronda is less durable because it has a high quantity of expandable clays (smectites) and a high percentage of pores in the 0.1–1 μm range, in which the pressure produced by salt crystallization is strongest. In Molinaza Roja the decay agents caused significant sanding due to loss of cohesion between the clasts, especially during the salt crystallization test. In both stones, the anisotropies (oriented textures) have an important role in their hydric and dynamic behavior and also affect their mechanical properties (especially in the compression resistance). No changes in color were detected.