7 resultados para Pathologies. Mortar. Diatomite. Additives. Cellulose

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comunicación presentada en forma de póster en el "12th Mediterranean Congress of Chemical Engineering", Barcelona (Spain), November 15-18, 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary nano-biocomposite films based on poly(lactic acid) (PLA) with modified cellulose nanocrystals (s-CNC) and synthesized silver nanoparticles (Ag) have been prepared and characterized. The functionalization of the CNC surface with an acid phosphate ester of ethoxylated nonylphenol favoured its dispersion in the PLA matrix. The positive effects of the addition of cellulose and silver on the PLA barrier properties were confirmed by reductions in the water permeability (WVP) and oxygen transmission rate (OTR) of the films tested. The migration level of all nano-biocomposites in contact with food simulants were below the permitted limits in both non-polar and polar simulants. PLA nano-biocomposites showed a significant antibacterial activity influenced by the Ag content, while composting tests showed that the materials were visibly disintegrated after 15 days with the ternary systems showing the highest rate of disintegration under composting conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(lactic acid) (PLA)-based high performance nano-biocomposites were prepared to be used in active food packaging. Pristine (CNC) and surfactant modified cellulose nanocrystals (s-CNC) with silver (Ag) nanoparticles were used as the matrix modifiers. Binary and ternary systems were prepared. Morphological investigations revealed the good distribution of silver nanoparticles in PLA ternary systems. The combination of s-CNC and Ag nanoparticles increased the barrier effect of the produced films while the results of overall migration for the PLA nano-biocomposites revealed that none of the samples exceeded the overall migration limit, since results were well below 60 mg kg−1 of simulant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of biopolymers obtained from renewable resources is currently growing and they have found unique applications as matrices and/or nanofillers in ‘green’ nanocomposites. Grafting of polymer chains to the surface of cellulose nanofillers was also studied to promote the dispersion of cellulose nanocrystals in hydrophobic polymer matrices. The aim of this study was to modify the surface of cellulose nanocrystals by grafting from L-lactide by ring-opening polymerization in order to improve the compatibility of nanocrystals and hydrophobic polymer matrices. The effectiveness of the grafting was evidenced by the long-term stability of a suspension of poly(lactic acid)-grafted cellulose nanocrystals in chloroform, by the presence of the carbonyl peak in modified samples determined by Fourier transform infrared spectroscopy and by the modification in C1s contributions observed by X-ray photoelectron spectroscopy. No modification in nanocrystal shape was observed in birefringence studies and transmission electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase of building pathologies related to the use of stone materials and the use of ventilated stone veneers, requires the reformulation of design concepts in building façades and also the reformulation of the architectural project. The aim of this paper is to identify, analyze and evaluate synthetically building pathologies in stone ventilated façades in order to obtain the main technical conditions to be considered in the architectural design, by interpreting its mechanical behavior and capabilities to prevent such pathologies and to ensure the proper features during the building lifetime. The methodology is based on both laboratory stone tests and in situ tests about construction systems, by analyzing physical and mechanical behavior of the outer layer in relation to other building requirements. The results imply the need of proper sizing, specific quality control and practical application of calculation methods, to control high concentration pressures in ventilated façades by reaching appropriate project solutions. In conclusion, the research about different pathologies of stone ventilated façades, the study of their mechanical behavior, their anchorage and their connection with their constructive aspects, will help to improve the construction quality of the stone ventilated façade in buildings and to enhance the use of natural stone in modern architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diammonium hydrogen phosphate (DAP) is commonly used as a flavor ingredient of commercial cigarettes. In addition, among its other uses, it is employed to expand the tobacco volume, to manufacture reconstituted tobacco sheet, and to denicotinize tobacco. However, the use of DAP as a cigarette ingredient is a controversial issue. Some authors have stated that ammonium compounds added to tobacco increase smoke ammonia and “smoke pH”, resulting in more free nicotine available in the smoke. On the other hand, other researchers have reported that the larger ammonium content of a cigarette blend due to the presence of DAP was not reflected in increased smoke ammonia. In this work, the thermal behavior of DAP, tobacco and DAP-tobacco mixtures has been studied by TGA/FTIR. The chemical processes involved in the different pyrolysis steps of DAP have been suggested. Marked changes in the pyrolytic behavior of both, tobacco and DAP have been detected when analyzing the behavior of the mixtures. A displacement of the decomposition steps mainly related to the glycerol and lignin from tobacco toward lower temperatures has been observed, whereas that associated with cellulose is displaced toward higher temperature. Additionally, no peak corresponding to the phosphorous oxides decomposition has been detected in the curves relating to the DAP-tobacco mixtures. All these features are indicative of the strong interactions between DAP and tobacco. The FTIR spectra show no significant qualitative differences between the qualitative overall composition of the gases evolved from the pyrolysis of tobacco in the absence and in the presence of DAP. Nevertheless, depending on the temperature considered, the addition of DAP contributes to a decrease in the generation of hydrocarbons and an increase in the formation of CO, CO2 and oxygenated compounds in terms of amount generated per mass of pyrolysed tobacco.