4 resultados para Parallel methods
em Universidad de Alicante
Resumo:
The so-called parallel multisplitting nonstationary iterative Model A was introduced by Bru, Elsner, and Neumann [Linear Algebra and its Applications 103:175-192 (1988)] for solving a nonsingular linear system Ax = b using a weak nonnegative multisplitting of the first type. In this paper new results are introduced when A is a monotone matrix using a weak nonnegative multisplitting of the second type and when A is a symmetric positive definite matrix using a P -regular multisplitting. Also, nonstationary alternating iterative methods are studied. Finally, combining Model A and alternating iterative methods, two new models of parallel multisplitting nonstationary iterations are introduced. When matrix A is monotone and the multisplittings are weak nonnegative of the first or of the second type, both models lead to convergent schemes. Also, when matrix A is symmetric positive definite and the multisplittings are P -regular, the schemes are also convergent.
Resumo:
In this paper we describe an hybrid algorithm for an even number of processors based on an algorithm for two processors and the Overlapping Partition Method for tridiagonal systems. Moreover, we compare this hybrid method with the Partition Wang’s method in a BSP computer. Finally, we compare the theoretical computation cost of both methods for a Cray T3D computer, using the cost model that BSP model provides.
Resumo:
Virtual screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. Most VS methods suppose a unique binding site for the target, but it has been demonstrated that diverse ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant fact. This problem is circumvented by a novel VS methodology named BINDSURF that scans the whole protein surface in order to find new hotspots, where ligands might potentially interact with, and which is implemented in last generation massively parallel GPU hardware, allowing fast processing of large ligand databases. BINDSURF can thus be used in drug discovery, drug design, drug repurposing and therefore helps considerably in clinical research. However, the accuracy of most VS methods and concretely BINDSURF is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to improve accuracy of the scoring functions used in BINDSURF we propose a hybrid novel approach where neural networks (NNET) and support vector machines (SVM) methods are trained with databases of known active (drugs) and inactive compounds, being this information exploited afterwards to improve BINDSURF VS predictions.
Resumo:
Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. Most VS methods suppose a unique binding site for the target, but it has been demonstrated that diverse ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant fact. This problem is circumvented by a novel VS methodology named BINDSURF that scans the whole protein surface to find new hotspots, where ligands might potentially interact with, and which is implemented in massively parallel Graphics Processing Units, allowing fast processing of large ligand databases. BINDSURF can thus be used in drug discovery, drug design, drug repurposing and therefore helps considerably in clinical research. However, the accuracy of most VS methods is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to solve this problem, we propose a novel approach where neural networks are trained with databases of known active (drugs) and inactive compounds, and later used to improve VS predictions.