5 resultados para Panoramic projections. Virtual Environments. Navigation in 3D environments. Virtual Reality
em Universidad de Alicante
Resumo:
The use of 3D imaging techniques has been early adopted in the footwear industry. In particular, 3D imaging could be used to aid commerce and improve the quality and sales of shoes. Footwear customization is an added value aimed not only to improve product quality, but also consumer comfort. Moreover, customisation implies a new business model that avoids the competition of mass production coming from new manufacturers settled mainly in Asian countries. However, footwear customisation implies a significant effort at different levels. In manufacturing, rapid and virtual prototyping is required; indeed the prototype is intended to become the final product. The whole design procedure must be validated using exclusively virtual techniques to ensure the feasibility of this process, since physical prototypes should be avoided. With regard to commerce, it would be desirable for the consumer to choose any model of shoes from a large 3D database and be able to try them on looking at a magic mirror. This would probably reduce costs and increase sales, since shops would not require storing every shoe model and the process of trying several models on would be easier and faster for the consumer. In this paper, new advances in 3D techniques coming from experience in cinema, TV and games are successfully applied to footwear. Firstly, the characteristics of a high-quality stereoscopic vision system for footwear are presented. Secondly, a system for the interaction with virtual footwear models based on 3D gloves is detailed. Finally, an augmented reality system (magic mirror) is presented, which is implemented with low-cost computational elements that allow a hypothetical customer to check in real time the goodness of a given virtual footwear model from an aesthetical point of view.
Resumo:
Since the beginning of 3D computer vision problems, the use of techniques to reduce the data to make it treatable preserving the important aspects of the scene has been necessary. Currently, with the new low-cost RGB-D sensors, which provide a stream of color and 3D data of approximately 30 frames per second, this is getting more relevance. Many applications make use of these sensors and need a preprocessing to downsample the data in order to either reduce the processing time or improve the data (e.g., reducing noise or enhancing the important features). In this paper, we present a comparison of different downsampling techniques which are based on different principles. Concretely, five different downsampling methods are included: a bilinear-based method, a normal-based, a color-based, a combination of the normal and color-based samplings, and a growing neural gas (GNG)-based approach. For the comparison, two different models have been used acquired with the Blensor software. Moreover, to evaluate the effect of the downsampling in a real application, a 3D non-rigid registration is performed with the data sampled. From the experimentation we can conclude that depending on the purpose of the application some kernels of the sampling methods can improve drastically the results. Bilinear- and GNG-based methods provide homogeneous point clouds, but color-based and normal-based provide datasets with higher density of points in areas with specific features. In the non-rigid application, if a color-based sampled point cloud is used, it is possible to properly register two datasets for cases where intensity data are relevant in the model and outperform the results if only a homogeneous sampling is used.
Resumo:
This paper presents the use of immersive virtual reality systems in the educational intervention with Asperger students. The starting points of this study are features of these students' cognitive style that requires an explicit teaching style supported by visual aids and highly structured environments. The proposed immersive virtual reality system, not only to assess the student's behavior and progress, but also is able to adapt itself to the student's specific needs. Additionally, the immersive reality system is equipped with sensors that can determine certain behaviors of the students. This paper determines the possible inclusion of immersive virtual reality as a support tool and learning strategy in these particular students' intervention. With this objective two task protocols have been defined with which the behavior and interaction situations performed by participant students are recorded. The conclusions from this study talks in favor of the inclusion of these virtual immersive environments as a support tool in the educational intervention of Asperger syndrome students as their social competences and executive functions have improved.
Resumo:
Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.
Resumo:
3D sensors provides valuable information for mobile robotic tasks like scene classification or object recognition, but these sensors often produce noisy data that makes impossible applying classical keypoint detection and feature extraction techniques. Therefore, noise removal and downsampling have become essential steps in 3D data processing. In this work, we propose the use of a 3D filtering and down-sampling technique based on a Growing Neural Gas (GNG) network. GNG method is able to deal with outliers presents in the input data. These features allows to represent 3D spaces, obtaining an induced Delaunay Triangulation of the input space. Experiments show how the state-of-the-art keypoint detectors improve their performance using GNG output representation as input data. Descriptors extracted on improved keypoints perform better matching in robotics applications as 3D scene registration.