2 resultados para PROTEIN PRECIPITATION METHODS
em Universidad de Alicante
Resumo:
Microalgae have many applications, such as biodiesel production or food supplement. Depending on the application, the optimization of certain fractions of the biochemical composition (proteins, carbohydrates and lipids) is required. Therefore, samples obtained in different culture conditions must be analyzed in order to compare the content of such fractions. Nevertheless, traditional methods necessitate lengthy analytical procedures with prolonged sample turn-around times. Results of the biochemical composition of Nannochloropsis oculata samples with different protein, carbohydrate and lipid contents obtained by conventional analytical methods have been compared to those obtained by thermogravimetry (TGA) and a Pyroprobe device connected to a gas chromatograph with mass spectrometer detector (Py–GC/MS), showing a clear correlation. These results suggest a potential applicability of these techniques as fast and easy methods to qualitatively compare the biochemical composition of microalgal samples.
Resumo:
Virtual screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. Most VS methods suppose a unique binding site for the target, but it has been demonstrated that diverse ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant fact. This problem is circumvented by a novel VS methodology named BINDSURF that scans the whole protein surface in order to find new hotspots, where ligands might potentially interact with, and which is implemented in last generation massively parallel GPU hardware, allowing fast processing of large ligand databases. BINDSURF can thus be used in drug discovery, drug design, drug repurposing and therefore helps considerably in clinical research. However, the accuracy of most VS methods and concretely BINDSURF is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to improve accuracy of the scoring functions used in BINDSURF we propose a hybrid novel approach where neural networks (NNET) and support vector machines (SVM) methods are trained with databases of known active (drugs) and inactive compounds, being this information exploited afterwards to improve BINDSURF VS predictions.