3 resultados para Oxygenated xanthones
em Universidad de Alicante
Resumo:
Environmentally friendly sulfonated black carbon (BC) catalysts were prepared from biodiesel waste, glycerol. These black carbons (BCs) contain a high amount of acidic groups, mainly sulfonated and oxygenated groups. Furthermore, these catalysts show a high catalytic activity in the glycerol etherification reaction with tert-butyl alcohol, the activity being larger for the sample prepared with a higher glycerol:sulfuric acid ratio (1:3). The yield for mono-tert-butyl glycerol (MTBG), di-tert-butyl glycerol (DTBG) and tri-tert-butyl-glycerol (TTBG) were very similar to those obtained using a commercial resin, Amberlyst-15. Furthermore, experimental results show that the carbon with the lowest acidic surface group content, BC prepared in minor glycerol:sulfuric acid ratio (10:1), can be chemically treated after carbonization to achieve an improved catalytic activity. The activity of all BCs is high and very similar, about 50% and 20% for the MTBG and DTBG + TTBG, respectively.
Resumo:
Koninckinids are a suitable group to shed light on the biotic crisis suffered by brachiopod fauna in the Early Jurassic. Koninckinid fauna recorded in the late Pliensbachian–early Toarcian from the easternmost Subbetic basin is analyzed and identified as a precursor signal for one of the most conspicuous mass extinction events of the Phylum Brachiopoda, a multi-phased interval with episodes of changing environmental conditions, whose onset can be detected from the Elisa–Mirabile subzones up to the early Toarcian extinction boundary in the lowermost Serpentinum Zone (T-OAE). The koninckinid fauna had a previously well-established migration pattern from the intra-Tethyan to the NW-European basins but a first phase with a progressive warming episode in the Pliensbachian–Toarcian transition triggered a koninckinid fauna exodus from the eastern/central Tethys toward the westernmost Mediterranean margins. A second stage shows an adaptive response to more adverse conditions in the westernmost Tethyan margins and finally, an escape and extinction phase is detected in the Atlantic areas from the mid-Polymorphum Zone onwards up to their global extinction in the lowermost Serpentinum Zone. This migration pattern is independent of the paleogeographic bioprovinciality and is unrelated to a facies-controlled pattern. The anoxic/suboxic environmental conditions should only be considered as a minor factor of partial control since well-oxygenated habitats are noted in the intra-Tethyan basins and this factor is noticeable only in the second westward migratory stage (with dwarf taxa and oligotypical assemblages). The analysis of cold-seep proxies in the Subbetic deposits suggests a radiation that is independent of methane releases in the Subbetic basin.
Resumo:
Diammonium hydrogen phosphate (DAP) is commonly used as a flavor ingredient of commercial cigarettes. In addition, among its other uses, it is employed to expand the tobacco volume, to manufacture reconstituted tobacco sheet, and to denicotinize tobacco. However, the use of DAP as a cigarette ingredient is a controversial issue. Some authors have stated that ammonium compounds added to tobacco increase smoke ammonia and “smoke pH”, resulting in more free nicotine available in the smoke. On the other hand, other researchers have reported that the larger ammonium content of a cigarette blend due to the presence of DAP was not reflected in increased smoke ammonia. In this work, the thermal behavior of DAP, tobacco and DAP-tobacco mixtures has been studied by TGA/FTIR. The chemical processes involved in the different pyrolysis steps of DAP have been suggested. Marked changes in the pyrolytic behavior of both, tobacco and DAP have been detected when analyzing the behavior of the mixtures. A displacement of the decomposition steps mainly related to the glycerol and lignin from tobacco toward lower temperatures has been observed, whereas that associated with cellulose is displaced toward higher temperature. Additionally, no peak corresponding to the phosphorous oxides decomposition has been detected in the curves relating to the DAP-tobacco mixtures. All these features are indicative of the strong interactions between DAP and tobacco. The FTIR spectra show no significant qualitative differences between the qualitative overall composition of the gases evolved from the pyrolysis of tobacco in the absence and in the presence of DAP. Nevertheless, depending on the temperature considered, the addition of DAP contributes to a decrease in the generation of hydrocarbons and an increase in the formation of CO, CO2 and oxygenated compounds in terms of amount generated per mass of pyrolysed tobacco.