3 resultados para Oxygen-derived Free Radicals
em Universidad de Alicante
Resumo:
Wet unsupported and supported 1,1′-binaphthalene-2,2′-diamine (BINAM) derived prolinamides are efficient organocatalysts under solvent-free conditions at room temperature to perform the synthesis of chiral tacrine analogues in good yields (up to 93%) and excellent enantioselectivies (up to 96%). The Friedländer reaction involved in this process takes place with several cyclohexanone derivatives and 2-aminoaromatic aldehydes, and it is compatible with the presence of either electron-withdrawing or electron-donating groups at the aromatic ring of the 2-aminoaryl aldehyde derivatives used as electrophiles. The reaction can be extended to cyclopentanone derivatives, affording a regioisomeric but separable mixture of products. The use of the wet silica gel supported organocatalyst, under solvent-free conditions, for this process led to the expected product (up to 87% enantiomeric excess), with its reuse being possible at least up to five times.
Resumo:
Chiral L-prolinamides 2 containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-pyrimidinyl unit are synthesized and used as general organocatalysts for intermolecular and intramolecular aldol reactions with 1,6-hexanedioic acid as a co-catalyst under solvent-free conditions. The intermolecular reaction between ketone–aldehyde and aldehyde–aldehyde must be performed under wet conditions with catalyst (S,S)-2b at 10 °C, which affords anti-aldols with high regio-, diastereo-, and enantioselectivities. For the Hajos–Parrish–Eder–Sauer–Wiechert reaction, both diastereomers of catalyst 2 give similar results at room temperature in the absence of water to give the corresponding Wieland–Miescher ketone and derivatives. Both types of reactions were scaled up to 1 g, and the organocatalysts were recovered by extractive workup and reused without any appreciable loss in activity. DFT calculations support the stereochemical results of the intermolecular process and the bifunctional role played by the organocatalyst by providing a computational comparison of the H-bonding networks occurring with catalysts 2a and 2b.
Resumo:
Dihydronaphthalenes were oxyarylated with o-iodophenols, in PEG-400 at 140 or 170 °C, leading regio- and stereoselectively to 5-carbapterocarpans. By using Pd(OAc)2 (5–10 mol%) as precatalyst and Ag2CO3 (1.1 equiv) as base (conditions A), products were obtained in good to excellent chemical yields, in 5–30 minutes, irrespective of the pattern of substitution the starting materials. Alternatively, when p-hydroxyacetophenone oxime derived palladacycle (1 mol%) was used as precatalyst, and dicyclohexylamine (2 equiv) was used as base (silver-free, conditions B), the corresponding adducts were obtained in moderate to good yields, in 0.5 to 4 hours. Finally, the oxyarylation of dihydronaphthalenes and chromenquinone with o-iodophenols and 3-iodolawsone in PEG-400 under conditions A led regio- and stereoselectively to the formation of carbapterocarpanquinones and pterocarpanquinones in moderate yield.