6 resultados para Over-oxidation

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, the steam reforming of biofuels has been presented as a potential hydrogen source for fuel cells. Because this scenario represents an interesting opportunity for Colombia (South America), which produces large amounts of bioethanol, the steam reforming of ethanol was studied over a bimetallic RhPt/La2O3 catalyst under bulk mass transfer conditions. The effect of temperature and the initial concentrations of ethanol and water were evaluated at space velocities above 55,000 h−1 to determine the conditions that maximize the H2/CO ratio and reduce CH4 production while maintaining 100% conversion of ethanol. These requirements were accomplished when 21 mol% H2O and 3 mol% C2H5OH (steam/ethanol molar ratio = 7) were reacted at 600 °C. The catalyst stability was assessed under these reaction conditions during 120 h on stream, obtaining ethanol conversions above 99% during the entire test. The effect of both H2 and air flows as catalyst regeneration treatments were evaluated after 44 and 67 h on stream, respectively. The results showed that H2 treatment accelerated catalyst deactivation, and air regeneration increased both the catalyst stability and the H2 selectivity while decreasing CH4 generation. Fresh and spent catalyst samples were characterized by TEM/EDX, XPS, TPR, and TGA. Although the Rh and Pt in the fresh catalyst were completely reduced, the spent samples showed a partial oxidation of Rh and small amounts of carbonaceous residue. A possible Rh–Pt–Rh2O3 structure was proposed as the active site on the catalyst, which was regenerated by air treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A synthetic procedure to prepare novel materials (surface-mediated fillings) based on robust hierarchical monoliths is reported. The methodology includes the deposition of a (micro- or mesoporous) silica thin film on the support followed by growth of a porous monolithic SiO2 structure. It has been demonstrated that this synthesis is viable for supports of different chemical nature with different inner diameters without shrinkage of the silica filling. The formation mechanism of the surface-mediated fillings is based on a solution/precipitation process and the anchoring of the silica filling to the deposited thin film. The interaction between the two SiO2 structures (monolith and thin film) depends on the porosity of the thin film and yields composite materials with different mechanical stability. By this procedure, capillary microreactors have been prepared and have been proved to be highly active and selective in the total and preferential oxidation of carbon monoxide (TOxCO and PrOxCO).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, the preferential oxidation of CO in excess hydrogen (PROX reaction) was studied over Au catalysts supported on ceria and Y or Nb doped ceria. Both supports and catalysts have been extensively characterized by a number of advanced techniques; XRD, N2-adsortion, Raman spectroscopy, XPS, and H2-TPR. The catalytic results showed that when an ideal mixture of H2 and CO is used for the PROX reaction the gold supported on pure ceria behaves better than the others samples. However, when a typical reformate gas composition containing CO2 and H2O is used, the gold supported on Nb doped sample behaves better than gold supported in pure ceria. It is suggested that niobium hampers the strong adsorption of CO2 and H2O in the active sites, thus improving the catalytic performance in real reformate gas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel hierarchical SiO2 monolithic microreactors loaded with either Pd or Pt nanoparticles have been prepared in fused silica capillaries and tested in the Preferential Oxidation of CO (PrOx) reaction. Pd and Pt nanoparticles were prepared by the reduction by solvent method and the support used was a mesoporous SiO2 monolith prepared by a well-established sol–gel methodology. Comparison of the activity with an equivalent powder catalyst indicated that the microreactors show an enhanced catalytic behavior (both in terms of CO conversion and selectivity) due to the superior mass and heat transfer processes that take place inside the microchannel. TOF values at low CO conversions have been found to be ∼2.5 times higher in the microreactors than in the powder catalyst and the residence time seems to have a noticeable influence over the selectivity of the catalysts designed for this reaction. The Pd and Pt flexible microreactors developed in this work have proven to be effective for the CO oxidation reaction both in the presence and absence of H2, standing out as a very interesting and suitable option for the development of CO purification systems of small dimensions for portable and on-board applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

5% copper catalysts with Ce0.8M0.2Oδ supports (M = Zr, La, Ce, Pr or Nd) have been studied by rapid-scan operando DRIFTS for NOx Storage and Reduction (NSR) with high frequency (30 s) CO, H2 and 50%CO + 50%H2 micropulses. In the absence of reductant pulses, below 200–250 °C NOx was stored on the catalysts as nitrite and nitro groups, and above this temperature nitrates were the main species identified. The thermal stability of the NOx species stored on the catalysts depended on the acid/basic character of the dopant (M more acidic = NOx stored less stable ⇒ Zr4+ < none < Nd3+ < Pr3+ < La3+ ⇐ M more basic = NOx stored more stable). Catalysts regeneration was more efficient with H2 than with CO, and the CO + H2 mixture presented an intermediate behavior, but with smaller differences among the series of catalyst than observed using CO alone. N2 is the main NOx reduction product upon H2 regeneration. The highest NOx removal in NSR experiments performed at 400 °C with CO + H2 pulses was achieved with the catalyst with the most basic dopant (CuO/Ce0.8La0.2Oδ) while the poorest performing catalyst was that with the most acidic dopant (CuO/Ce0.8Zr0.2Oδ). The poor performance of CuO/Ce0.8Zr0.2Oδ in NSR experiments with CO pulses was attributed to its lower oxidation capacity compared to the other catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the metal precursor (presence or absence of chlorine) on the preferential oxidation of CO in the presence of H2 over Pt/CeO2 catalysts has been studied. The catalysts are prepared using (Pt(NH3)4)(NO3)2 and H2PtCl6, as precursors, in order to ascertain the effect of the chlorine species on the chemical properties of the support and on the catalytic behavior of these systems in the PROX reaction. The results show that chloride species exert an important effect on the redox properties of the oxide support due to surface chlorination. Consequently, the chlorinated catalyst exhibits a poorer catalytic activity at low temperatures compared with the chlorine-free catalyst, and this is accompanied by a higher selectivity to CO2 even at high reaction temperatures. It is proposed that the CO oxidation mechanism follows different pathways on each catalyst.