2 resultados para Optical-optical conversion efficiency

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the spin preparation efficiency by optical pumping of individual Mn atoms embedded in CdTe/ZnTe quantum dots. Monitoring the time dependence of the intensity of the fluorescence during the resonant optical pumping process in individual quantum dots allows to directly probe the dynamics of the initialization of the Mn spin. This technique presents the convenience of including preparation and readout of the Mn spin in the same step. Our measurements demonstrate that Mn spin initialization, at zero magnetic field, can reach an efficiency of 75% and occurs in the tens of nanoseconds range when a laser resonantly drives at saturation one of the quantum-dot transition. We observe that the efficiency of optical pumping changes from dot-to-dot and is affected by a magnetic field of a few tens of millitesla applied in Voigt or Faraday configuration. This is attributed to the local strain distribution at the Mn location which predominantly determines the dynamics of the Mn spin under weak magnetic field. The spectral distribution of the spin-flip-scattered photons from quantum dots presenting a weak optical pumping efficiency reveals a significant spin relaxation for the exciton split in the exchange field of the Mn spin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heavy metal-based quantum dots (QDs) have demonstrated to behave as efficient sensitizers in QD-sensitized solar cells (QDSSCs), as attested by the countless works and encouraging efficiencies reported so far. However, their intrinsic toxicity has arisen as a major issue for the prospects of commercialization. Here, we examine the potential of environmentally friendly zinc copper indium sulfide (ZCIS) QDs for the fabrication of liquid-junction QDSSCs by means of photoelectrochemical measurements. A straightforward approach to directly adsorb ZCIS QDs on TiO2 from a colloidal dispersion is presented. Incident photon-to-current efficiency (IPCE) spectra of sensitized photoanodes show a marked dependence on the adsorption time, with longer times leading to poorer performances. Cyclic voltammograms point to a blockage of the channels of the mesoporous TiO2 film by the agglomeration of QDs as the main reason for the decrease in efficiency. Photoanodes were also submitted to the ZnS treatment. Its effects on electron recombination with the electrolyte are analyzed through electrochemical impedance spectroscopy and photopotential measurements. The corresponding results bring out the role of the ZnS coating as a barrier layer preventing electron leakage toward the electrolyte, as argued in other QD-sensitized systems. The beneficial effect of the ZnS coating is ultimately reflected on the power conversion efficiency of complete devices, reaching values of 2 %. In a more general vein, through these findings, we aim to call the attention to the potentiality of this quaternary alloy, virtually unexplored as a light harvester for sensitized devices.