8 resultados para Optical pattern recognition.

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staff detection and removal is one of the most important issues in optical music recognition (OMR) tasks since common approaches for symbol detection and classification are based on this process. Due to its complexity, staff detection and removal is often inaccurate, leading to a great number of errors in posterior stages. For this reason, a new approach that avoids this stage is proposed in this paper, which is expected to overcome these drawbacks. Our approach is put into practice in a case of study focused on scores written in white mensural notation. Symbol detection is performed by using the vertical projection of the staves. The cross-correlation operator for template matching is used at the classification stage. The goodness of our proposal is shown in an experiment in which our proposal attains an extraction rate of 96 % and a classification rate of 92 %, on average. The results found have reinforced the idea of pursuing a new research line in OMR systems without the need of the removal of staff lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need to digitise music scores has led to the development of Optical Music Recognition (OMR) tools. Unfortunately, the performance of these systems is still far from providing acceptable results. This situation forces the user to be involved in the process due to the need of correcting the mistakes made during recognition. However, this correction is performed over the output of the system, so these interventions are not exploited to improve the performance of the recognition. This work sets the scenario in which human and machine interact to accurately complete the OMR task with the least possible effort for the user.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Behaviour analysis of construction safety systems is of fundamental importance to avoid accidental injuries. Traditionally, measurements of dynamic actions in Civil Engineering have been done through accelerometers, but high-speed cameras and image processing techniques can play an important role in this area. Here, we propose using morphological image filtering and Hough transform on high-speed video sequence as tools for dynamic measurements on that field. The presented method is applied to obtain the trajectory and acceleration of a cylindrical ballast falling from a building and trapped by a thread net. Results show that safety recommendations given in construction codes can be potentially dangerous for workers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Paper submitted to MML 2013, 6th International Workshop on Machine Learning and Music, Prague, September 23, 2013.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a targetless motion tracking method for detecting planar movements with subpixel accuracy. This method is based on the computation and tracking of the intersection of two nonparallel straight-line segments in the image of a moving object in a scene. The method is simple and easy to implement because no complex structures have to be detected. It has been tested and validated using a lab experiment consisting of a vibrating object that was recorded with a high-speed camera working at 1000 fps. We managed to track displacements with an accuracy of hundredths of pixel or even of thousandths of pixel in the case of tracking harmonic vibrations. The method is widely applicable because it can be used for distance measuring amplitude and frequency of vibrations with a vision system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human behaviour recognition has been, and still remains, a challenging problem that involves different areas of computational intelligence. The automated understanding of people activities from video sequences is an open research topic in which the computer vision and pattern recognition areas have made big efforts. In this paper, the problem is studied from a prediction point of view. We propose a novel method able to early detect behaviour using a small portion of the input, in addition to the capabilities of it to predict behaviour from new inputs. Specifically, we propose a predictive method based on a simple representation of trajectories of a person in the scene which allows a high level understanding of the global human behaviour. The representation of the trajectory is used as a descriptor of the activity of the individual. The descriptors are used as a cue of a classification stage for pattern recognition purposes. Classifiers are trained using the trajectory representation of the complete sequence. However, partial sequences are processed to evaluate the early prediction capabilities having a specific observation time of the scene. The experiments have been carried out using the three different dataset of the CAVIAR database taken into account the behaviour of an individual. Additionally, different classic classifiers have been used for experimentation in order to evaluate the robustness of the proposal. Results confirm the high accuracy of the proposal on the early recognition of people behaviours.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Object tracking with subpixel accuracy is of fundamental importance in many fields since it provides optimal performance at relatively low cost. Although there are many theoretical proposals that lead to resolution increments of several orders of magnitude, in practice this resolution is limited by the imaging systems. In this paper we propose and demonstrate through simple numerical models a realistic limit for subpixel accuracy. The final result is that maximum achievable resolution enhancement is connected with the dynamic range of the image, i.e., the detection limit is 1/2∧(nr.bits). The results here presented may aid in proper design of superresolution experiments in microscopy, surveillance, defense, and other fields.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced. First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and the recognition process are performed by using a similarity function that takes into account both the geometric and texture information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our proposal when compared with other state-of the-art methods.