6 resultados para Optical measurements.
em Universidad de Alicante
Optical probing of spin fluctuations of a single paramagnetic Mn atom in a semiconductor quantum dot
Resumo:
We analyzed the photoluminescence intermittency generated by a single paramagnetic spin localized in an individual semiconductor quantum dot. The statistics of the photons emitted by the quantum dot reflect the quantum fluctuations of the localized spin interacting with the injected carriers. Photon correlation measurements, which are reported here, reveal unique signatures of these fluctuations. A phenomenological model is proposed to quantitatively describe these observations, allowing a measurement of the spin dynamics of an individual magnetic atom at zero magnetic field. These results demonstrate the existence of an efficient spin-relaxation channel arising from a spin exchange with individual carriers surrounding the quantum dot. A theoretical description of a spin-flip mechanism involving spin exchange with surrounding carriers gives relaxation times in good agreement with the measured dynamics.
Resumo:
We have investigated the spin preparation efficiency by optical pumping of individual Mn atoms embedded in CdTe/ZnTe quantum dots. Monitoring the time dependence of the intensity of the fluorescence during the resonant optical pumping process in individual quantum dots allows to directly probe the dynamics of the initialization of the Mn spin. This technique presents the convenience of including preparation and readout of the Mn spin in the same step. Our measurements demonstrate that Mn spin initialization, at zero magnetic field, can reach an efficiency of 75% and occurs in the tens of nanoseconds range when a laser resonantly drives at saturation one of the quantum-dot transition. We observe that the efficiency of optical pumping changes from dot-to-dot and is affected by a magnetic field of a few tens of millitesla applied in Voigt or Faraday configuration. This is attributed to the local strain distribution at the Mn location which predominantly determines the dynamics of the Mn spin under weak magnetic field. The spectral distribution of the spin-flip-scattered photons from quantum dots presenting a weak optical pumping efficiency reveals a significant spin relaxation for the exciton split in the exchange field of the Mn spin.
Resumo:
Purpose To evaluate visual, optical, and quality of life (QoL) outcomes and intercorrelations after bilateral implantation of posterior chamber phakic intraocular lenses. Methods Twenty eyes with high to moderate myopia of 10 patients that underwent PRL implantation (Phakic Refractive Lens, Carl Zeiss Meditec AG) were examined. Refraction, visual acuity, photopic and low mesopic contrast sensitivity (CS) with and without glare, ocular aberrations, as well as QoL outcomes (National Eye Institute Refractive Error Quality of Life Instrument-42, NEI RQL-42) were evaluated at 12 months postoperatively. Results Significant improvement in uncorrected (UDVA) and best-corrected distance (CDVA) visual acuities were found postoperatively (p < 0.01), with significant reduction in spherical equivalent (p < 0.01). Low mesopic CS without glare was significantly better than measurements with glare for 1.5, 3, and 6 cycles/degree (p < 0.01). No significant correlations between higher order root mean square (RMS) with CDVA (r = −0.26, p = 0.27) and CS (r ≤ 0.45, p ≥ 0.05) were found. Postoperative binocular photopic CS for 12 cycles/degree and 18 cycles/degree correlated significantly with several RQL-42 scales. Glare index correlated significantly with CS measures and scotopic pupil size (r = −0.551, p = 0.04), but not with higher order RMS (r = −0.02, p = 0.94). Postoperative higher order RMS, postoperative primary coma and postoperative spherical aberration was significant higher for 5-mm pupil diameter (p < 0.01) compared with controls. Conclusions Correction of moderate to high myopia by means of PRL implantation had a positive impact on CS and QoL. The aberrometric increase induced by the surgery does not seem to limit CS and QoL. However, perception of glare is still a relevant disturbance in some cases possibly related to the limitation of the optical zone of the PRL.
Resumo:
Colors of special-effect coatings have strong dependence on illumination/viewing geometry and an appealing appearance. An open question is to ask about the minimum number of measurement geometries required to completely characterize their observed color shift. A recently published principal components analysis (PCA)-based procedure to estimate the color of special-effect coatings at any geometry from measurements at a reduced set of geometries was tested in this work by using the measurement geometries of commercial portable multiangle spectrophotometers X-Rite MA98, Datacolor FX10, and BYK-mac as reduced sets. The performance of the proposed PCA procedure for the color-shift estimation for these commercial geometries has been examined for 15 special-effect coatings. Our results suggest that for rendering the color appearance of 3D objects covered with special-effect coatings, the color accuracy obtained with this procedure may be sufficient. This is the case especially if geometries of X-Rite MA98 or Datacolor FX10 are used.
Resumo:
The phenological stages of onion fields in the first year of growth are estimated using polarimetric observables and single-polarization intensity channels. Experiments are undertaken on a time series of RADARSAT-2 C-band full-polarimetric synthetic aperture radar (SAR) images collected in 2009 over the Barrax region, Spain, where ground truth information about onion growth stages is provided by the European Space Agency (ESA)-funded agricultural bio/geophysical retrieval from frequent repeat pass SAR and optical imaging (AgriSAR) field campaign conducted in that area. The experimental results demonstrate that polarimetric entropy or copolar coherence when used jointly with the cross-polarized intensity allows unambiguously distinguishing three phenological intervals.
Resumo:
We present a study where the energy loss function of Ta2O5, initially derived in the optical limit for a limited region of excitation energies from reflection electron energy loss spectroscopy (REELS) measurements, was improved and extended to the whole momentum and energy excitation region through a suitable theoretical analysis using the Mermin dielectric function and requiring the fulfillment of physically motivated restrictions, such as the f- and KK-sum rules. The material stopping cross section (SCS) and energy-loss straggling measured for 300–2000 keV proton and 200–6000 keV helium ion beams by means of Rutherford backscattering spectrometry (RBS) were compared to the same quantities calculated in the dielectric framework, showing an excellent agreement, which is used to judge the reliability of the Ta2O5 energy loss function. Based on this assessment, we have also predicted the inelastic mean free path and the SCS of energetic electrons in Ta2O5.