6 resultados para Optical measurement.
em Universidad de Alicante
Resumo:
Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.
Optical probing of spin fluctuations of a single paramagnetic Mn atom in a semiconductor quantum dot
Resumo:
We analyzed the photoluminescence intermittency generated by a single paramagnetic spin localized in an individual semiconductor quantum dot. The statistics of the photons emitted by the quantum dot reflect the quantum fluctuations of the localized spin interacting with the injected carriers. Photon correlation measurements, which are reported here, reveal unique signatures of these fluctuations. A phenomenological model is proposed to quantitatively describe these observations, allowing a measurement of the spin dynamics of an individual magnetic atom at zero magnetic field. These results demonstrate the existence of an efficient spin-relaxation channel arising from a spin exchange with individual carriers surrounding the quantum dot. A theoretical description of a spin-flip mechanism involving spin exchange with surrounding carriers gives relaxation times in good agreement with the measured dynamics.
Resumo:
A reduced set of measurement geometries allows the spectral reflectance of special effect coatings to be predicted for any other geometry. A physical model based on flake-related parameters has been used to determine nonredundant measurement geometries for the complete description of the spectral bidirectional reflectance distribution function (BRDF). The analysis of experimental spectral BRDF was carried out by means of principal component analysis. From this analysis, a set of nine measurement geometries was proposed to characterize special effect coatings. It was shown that, for two different special effect coatings, these geometries provide a good prediction of their complete color shift.
Resumo:
In this paper, we demonstrate the use of a video camera for measuring the frequency of small-amplitude vibration movements. The method is based on image acquisition and multilevel thresholding and it only requires a video camera with high enough acquisition rate, not being necessary the use of targets or auxiliary laser beams. Our proposal is accurate and robust. We demonstrate the technique with a pocket camera recording low-resolution videos with AVI-JPEG compression and measuring different objects that vibrate in parallel or perpendicular direction to the optical sensor. Despite the low resolution and the noise, we are able to measure the main vibration modes of a tuning fork, a loudspeaker and a bridge. Results are successfully compared with design parameters and measurements with alternative devices.
Resumo:
Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.
Resumo:
Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) has been employed to carry out the determination of both major anions and cations in water samples. The anion quantification has been performed by means of a new automatic accessory. In this device chloride has been determined by continuously adding a silver nitrate solution. As a result solid silver chloride particles are formed and retained on a nylon filter inserted in the line. The emission intensity is read at a silver characteristic wavelength. By plotting the drop in silver signal versus the chloride concentration, a straight line is obtained. As regards bicarbonate, this anion has been on-line transformed into carbon dioxide with the help of a 2.0 mol L−1 nitric acid stream. Carbon signal is linearly related with bicarbonate concentration. Finally, information about sulfate concentration has been achieved by means of the measurement of sulfur emission intensity. All the steps have been simultaneously and automatically performed. With this setup detection limits have been 1.0, 0.4 and 0.09 mg L−1 for chloride, bicarbonate and sulfate, respectively. Furthermore, it affords good precision with RSD below 6 %. Cation (Ca, Mg, Na and K) concentration, in turn, has been obtained by simultaneously reading the emission intensity at characteristic wavelengths. The obtained limits of detection have been 8 × 10−3, 2 × 10−3, 8 × 10−4 and 10−2 mg L−1 for sodium, potassium, magnesium and calcium, respectively. As regards sample throughput, about 30 samples h−1 can be analysed. Validation results have revealed that the obtained concentrations for these anions are not significantly different as compared to the data provided by conventional methods. Finally, by considering the data for anions and cations, precise ion balances have been obtained for well and mineral water samples.