20 resultados para Open clusters and associations: individual: Dolidze 25
em Universidad de Alicante
Resumo:
Context. The young open cluster Dolidze 25, in the direction of the Galactic anticentre, has been attributed a very low metallicity, with typical abundances between −0.5 and −0.7 dex below solar. Aims. We intend to derive accurate cluster parameters and accurate stellar abundances for some of its members. Methods. We have obtained a large sample of intermediate- and high-resolution spectra for stars in and around Dolidze 25. We used the fastwind code to generate stellar atmosphere models to fit the observed spectra. We derive stellar parameters for a large number of OB stars in the area, and abundances of oxygen and silicon for a number of stars with spectral types around B0. Results. We measure low abundances in stars of Dolidze 25. For the three stars with spectral types around B0, we find 0.3 dex (Si) and 0.5 dex (O) below the values typical in the solar neighbourhood. These values, even though not as low as those given previously, confirm Dolidze 25 and the surrounding H ii region Sh2-284 as the most metal-poor star-forming environment known in the Milky Way. We derive a distance 4.5 ± 0.3 kpc to the cluster (rG ≈ 12.3 kpc). The cluster cannot be older than ~3 Myr, and likely is not much younger. One star in its immediate vicinity, sharing the same distance, has Si and O abundances at most 0.15 dex below solar. Conclusions. The low abundances measured in Dolidze 25 are compatible with currently accepted values for the slope of the Galactic metallicity gradient, if we take into account that variations of at least ±0.15 dex are observed at a given radius. The area traditionally identified as Dolidze 25 is only a small part of a much larger star-forming region that comprises the whole dust shell associated with Sh2-284 and very likely several other smaller H ii regions in its vicinity.
Resumo:
Context. Young massive clusters are key to map the Milky Way’s structure, and near-infrared large area sky surveys have contributed strongly to the discovery of new obscured massive stellar clusters. Aims. We present the third article in a series of papers focused on young and massive clusters discovered in the VVV survey. This article is dedicated to the physical characterization of VVV CL086, using part of its OB-stellar population. Methods. We physically characterized the cluster using JHKS near-infrared photometry from ESO public survey VVV images, using the VVV-SkZ pipeline, and near-infrared K-band spectroscopy, following the methodology presented in the first article of the series. Results. Individual distances for two observed stars indicate that the cluster is located at the far edge of the Galactic bar. These stars, which are probable cluster members from the statistically field-star decontaminated CMD, have spectral types between O9 and B0 V. According to our analysis, this young cluster (1.0 Myr < age < 5.0 Myr) is located at a distance of 11+5-6 kpc, and we estimate a lower limit for the cluster total mass of (2.8+1.6-1.4) · 103 M⊙. It is likely that the cluster contains even earlier and more massive stars.
Resumo:
We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 ± 10 Myr. The cluster is located at a distance d ≈ 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster with a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.
Resumo:
Context. Four clusters of red supergiants have been discovered in a region of the Milky Way close to base of the Scutum-Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. If the clusters are physically connected, this Scutum Complex would be the largest and most massive star-forming region ever identified in the Milky Way. Aims. The spatial extent of one of these clusters, RSGC3, has not been investigated. In this paper we explore the possibility that a population of red supergiants could be located in its vicinity. Methods. We utilised 2MASS JHKS photometry to identify candidate obscured luminous red stars in the vicinity of RSGC3. We observed a sample of candidates with the TWIN spectrograph on the 3.5-m telescope at Calar Alto, obtaining intermediate-resolution spectroscopy in the 8000−9000 Å range. We re-evaluated a number of classification criteria proposed in the literature for this spectral range and found that we could use our spectra to derive spectral types and luminosity classes. Results. We measured the radial velocity of five members of RSGC3, finding velocities similar to the average for members of Stephenson 2. Among the candidates observed outside the cluster, our spectra revealed eight M-type supergiants at distances <18′ from the centre of RSGC3, distributed in two clumps. The southern clump is most likely another cluster of red supergiants, with reddening and age identical to RSGC3. From 2MASS photometry, we identified four likely supergiant members of the cluster in addition to the five spectroscopically observed. The northern clump may be a small cluster with similar parameters. Photometric analysis of the area around RSGC3 suggests the presence of a large (>30) population of red supergiants with similar colours. Conclusions. Our data suggest that the massive cluster RSGC3 is surrounded by an extended association, which may be very massive ( ≳ 105 M⊙). We also show that supergiants in the Scutum Complex may be characterised via a combination of 2MASS photometry and intermediate-to-high-resolution spectroscopy in the Z band.
Resumo:
Context. Several clusters of red supergiants have been discovered in a small region of the Milky Way close to the base of the Scutum-Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. Amongst these clusters, Stephenson 2, with a core grouping of 26 red supergiants, is a strong candidate to be the most massive young cluster in the Galaxy. Aims. Stephenson 2 is located close to a region where a strong over-density of red supergiants had been found. We explore the actual cluster size and its possible connection to this over-density. Methods. Taking advantage of Virtual Observatory tools, we have performed a cross-match between the DENIS, USNO-B1 and 2MASS catalogues to identify candidate obscured luminous red stars around Stephenson 2, and in a control nearby region. More than 600 infrared bright stars fulfill our colour criteria, with the vast majority having a counterpart in the I band and >400 being sufficiently bright in I to allow observation with a 4-m class telescope. We observed a subsample of ~250 stars, using the multi-object, wide-field, fibre spectrograph AF2 on the WHT telescope in La Palma, obtaining intermediate-resolution spectroscopy in the 7500–9000 Å range. We derived spectral types and luminosity classes for all these objects and measured their radial velocities. Results. Our targets turned out to be G and K supergiants, late (≥ M4) M giants, and M-type bright giants (luminosity class II) and supergiants. We found ~35 red supergiants with radial velocities similar to Stephenson 2 members, spread over the two areas surveyed. In addition, we found ~40 red supergiants with radial velocities incompatible in principle with a physical association. Conclusions. Our results show that Stephenson 2 is not an isolated cluster, but part of a huge structure likely containing hundreds of red supergiants, with radial velocities compatible with the terminal velocity at this Galactic longitude (and a distance ~6 kpc). In addition, we found evidence of several populations of massive stars at different distances along this line of sight.
Resumo:
Context. The open cluster NGC 7419 is known to contain five red supergiants and a very high number of Be stars. However, there are conflicting reports about its age and distance that prevent a useful comparison with other clusters. Aims. We intend to obtain more accurate parameters for NGC 7419, using techniques different from those of previous authors, so that it may be used as a calibrator for more obscured clusters. Methods. We obtained Strömgren photometry of the open cluster NGC 7419, as well as classification spectroscopy of ~20 stars in the area. We then applied standard analysis and classification techniques. Results. We find a distance of 4 ± 0.4 kpc and an age of 14 ± 2 Myr for NGC 7419. The main-sequence turn-off is found at spectral type B1, in excellent agreement. We identify 179 B-type members, implying that there are more than 1200 M⊙ in B stars at present. Extrapolating this to lower masses indicates an initial cluster mass of between 7000 and 10 000 M⊙, depending on the shape of the initial mass function. We find a very high fraction (≈40%) of Be stars around the turn-off, but very few Be stars at lower masses. We also report for the first time a strong variability in the emission characteristics of Be stars. We verified that the parameters of the red supergiant members can be used to obtain accurate cluster parameters. Conclusions. NGC 7419 is sufficiently massive to serve as a testbed for theoretical predictions and as a template to compare more obscured clusters. The distribution of stars above the main-sequence turn-off is difficult to accommodate with current evolutionary tracks. Though the presence of five red supergiants is marginally consistent with theoretical expectations, the high number of Be stars and very low number of luminous evolved B stars hint at some unknown physical factor that is not considered in current synthesis models.
Resumo:
We provide a complete characterization of the astrophysical properties of the σ Ori Aa, Ab, B hierarchical triple system and an improved set of orbital parameters for the highly eccentric σ Ori Aa, Ab spectroscopic binary. We compiled a spectroscopic data set comprising 90 high-resolution spectra covering a total time span of 1963 days. We applied the Lehman-Filhés method for a detailed orbital analysis of the radial velocity curves and performed a combined quantitative spectroscopic analysis of the σ Ori Aa, Ab, B system by means of the stellar atmosphere code FASTWIND. We used our own plus other available information on photometry and distance to the system for measuring the radii, luminosities, and spectroscopic masses of the three components. We also inferred evolutionary masses and stellar ages using the Bayesian code BONNSAI. The orbital analysis of the new radial velocity curves led to a very accurate orbital solution of the σ Ori Aa, Ab pair. We provided indirect arguments indicating that σ Ori B is a fast-rotating early B dwarf. The FASTWIND+BONNSAI analysis showed that the Aa, Ab pair contains the hottest and most massive components of the triple system while σ Ori B is a bit cooler and less massive. The derived stellar ages of the inner pair are intriguingly younger than the one widely accepted for the σ Orionis cluster, at 3 ± 1 Ma. The outcome of this study will be of key importance for a precise determination of the distance to the σ Orionis cluster, the interpretation of the strong X-ray emission detected for σ Ori Aa, Ab, B, and the investigation of the formation and evolution of multiple massive stellar systems and substellar objects.
Resumo:
Discoveries during the last two years have revealed the existence of a vast region of star formation close to the base of the Scutum Arm, where at least five clusters of red supergiants have been found. In order to understand the nature of this region, we need to determine accurate distances to the clusters. We present here the first results of an ongoing program to derive fundamental parameters (such as age, distance, etc.) to the massive cluster Stephenson 2 studying for the first time its main sequence stars.
Resumo:
Context. It appears that most (if not all) massive stars are born in multiple systems. At the same time, the most massive binaries are hard to find owing to their low numbers throughout the Galaxy and the implied large distances and extinctions. Aims. We want to study LS III +46 11, identified in this paper as a very massive binary; another nearby massive system, LS III +46 12; and the surrounding stellar cluster, Berkeley 90. Methods. Most of the data used in this paper are multi-epoch high S/N optical spectra, although we also use Lucky Imaging and archival photometry. The spectra are reduced with dedicated pipelines and processed with our own software, such as a spectroscopic-orbit code, CHORIZOS, and MGB. Results. LS III +46 11 is identified as a new very early O-type spectroscopic binary [O3.5 If* + O3.5 If*] and LS III +46 12 as another early O-type system [O4.5 V((f))]. We measure a 97.2-day period for LS III +46 11 and derive minimum masses of 38.80 ± 0.83 M⊙ and 35.60 ± 0.77 M⊙ for its two stars. We measure the extinction to both stars, estimate the distance, search for optical companions, and study the surrounding cluster. In doing so, a variable extinction is found as well as discrepant results for the distance. We discuss possible explanations and suggest that LS III +46 12 may be a hidden binary system where the companion is currently undetected.
Resumo:
Context. VISTA Variables in the Vía Láctea (VVV) is one of six ESO Public Surveys using the 4 meter Visible and Infrared Survey Telescope for Astronomy (VISTA). The VVV survey covers the Milky Way bulge and an adjacent section of the disk, and one of the principal objectives is to search for new star clusters within previously unreachable obscured parts of the Galaxy. Aims. The primary motivation behind this work is to discover and analyze obscured star clusters in the direction of the inner Galactic disk and bulge. Methods. Regions of the inner disk and bulge covered by the VVV survey were visually inspected using composite JHKS color images to select new cluster candidates on the basis of apparent overdensities. DR1, DR2, CASU, and point spread function photometry of 10 × 10 arcmin fields centered on each candidate cluster were used to construct color–magnitude and color–color diagrams. Follow-up spectroscopy of the brightest members of several cluster candidates was obtained in order to clarify their nature. Results. We report the discovery of 58 new infrared cluster candidates. Fundamental parameters such as age, distance, and metallicity were determined for 20 of the most populous clusters.
Resumo:
Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (vsini) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and vsini using spectra from repeated exposures of the same stars. Results. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and vsini, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student’s t-distributions than by normal distributions. Conclusions. Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the vsini precision for stars in young clusters, as a function of S/N, vsini and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22–0.26 km s-1, dependent on instrumental configuration.
Resumo:
Context. The discovery of several clusters of red supergiants towards l = 24°−30° has triggered interest in this area of the Galactic plane, where lines of sight are very complex and previous explorations of the stellar content were very preliminary. Aims. We attempt to characterise the stellar population associated with the H ii region RCW 173 (=Sh2-60), located at, as previous studies have suggested that this population could be beyond the Sagittarius arm. Methods. We obtained UBV photometry of a stellar field to the south of the brightest part of RCW 173, as well as spectroscopy of about twenty stars in the area. We combined our new data with archival 2MASS near-infrared photometry and Spitzer/GLIMPSE imaging and photometry, to achieve a more accurate characterisation of the stellar sources and the associated cloud. Results. We find a significant population of early-type stars located at d = 3.0 kpc, in good agreement with the “near” dynamical distance to the H ii region. This population should be located at the near intersection of the Scutum-Crux arm. A luminous O7 II star is likely to be the main source of ionisation. Many stars are concentrated around the bright nebulosity, where GLIMPSE images in the mid infrared show the presence of a bubble of excited material surrounding a cavity that coincides spatially with a number of B0-1 V stars. We interpret this as an emerging cluster, perhaps triggered by the nearby O7 II star. We also find a number of B-type giants. Some of them are located at approximately the same distance, and may be part of an older population in the same area, characterised by much lower reddening. A few have shorter distance moduli and are likely to be located in the Sagittarius arm. Conclusions. The line of sight in this direction is very complex. Optically visible tracers delineate two spiral arms, but seem to be absent beyond d ≈ 3 kpc. Several H ii regions in this area suggest that the Scutum-Crux arm contains thick clouds actively forming stars. All these populations are projected on top of the major stellar complex signposted by the clusters of red supergiants.
Resumo:
Context. Recent studies have shown that the area around the massive, obscured cluster RSGC3 may harbour several clusters of red supergiants. Aims. We analyse a clump of photometrically selected red supergiant candidates 20′ south of RSGC3 in order to confirm the existence of another of these clusters. Methods. Using medium-resolution infrared spectroscopy around 2.27 μm, we derived spectral types and velocities along the line of sight for the selected candidates, confirming their nature and possible association. Results. We find a compact clump of eight red supergiants and four other candidates at some distance, all of them spectroscopically confirmed red supergiants. The majority of these objects must form an open cluster, which we name Alicante 10. Because of the high reddening and strong field contamination, the cluster sequence is not clearly seen in 2MASS or GPS-UKIDSS. From the observed sources, we derive E(J − KS) = 2.6 and d ≈ 6 kpc. Conclusions. Although the cluster is smaller than RSGC3, it has an initial mass in excess of 10 000 M⊙, and it seems to be part of the RSGC3 complex. With the new members this association already has 35 spectroscopically confirmed red supergiants, confirming its place as one of the most active sites of recent stellar formation in the Galaxy.
Resumo:
Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopy of some 100 000 Milky Way stars using the FLAMES spectrograph at the VLT, down to V = 19 mag, systematically covering all the main components of the Milky Way and providing the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. Observations of young open clusters, in particular, are giving new insights into their initial structure, kinematics, and their subsequent evolution. Aims. This paper describes the analysis of UVES and GIRAFFE spectra acquired in the fields of young clusters whose population includes pre-main sequence (PMS) stars. The analysis is applied to all stars in such fields, regardless of any prior information on membership, and provides fundamental stellar atmospheric parameters, elemental abundances, and PMS-specific parameters such as veiling, accretion, and chromospheric activity. Methods. When feasible, different methods were used to derive raw parameters (e.g. line equivalent widths) fundamental atmospheric parameters and derived parameters (e.g. abundances). To derive some of these parameters, we used methods that have been extensively used in the past and new ones developed in the context of the Gaia-ESO survey enterprise. The internal precision of these quantities was estimated by inter-comparing the results obtained by these different methods, while the accuracy was estimated by comparison with independent external data, such as effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. A validation procedure based on these comparisons was applied to discard spurious or doubtful results and produce recommended parameters. Specific strategies were implemented to resolve problems of fast rotation, accretion signatures, chromospheric activity, and veiling. Results. The analysis carried out on spectra acquired in young cluster fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. These include targets in the fields of the ρ Oph, Cha I, NGC 2264, γ Vel, and NGC 2547 clusters. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide stellar parameters with confidence for the much larger GIRAFFE sample. Precisions are estimated to be ≈120 K rms in Teff, ≈0.3 dex rms in log g, and ≈0.15 dex rms in [Fe/H] for the UVES and GIRAFFE setups.
Resumo:
Context. The eclipsing binary GU Mon is located in the star-forming cluster Dolidze 25, which has the lowest metallicity measured in a Milky Way young cluster. Aims. GU Mon has been identified as a short-period eclipsing binary with two early B-type components. We set out to derive its orbital and stellar parameters. Methods. We present a comprehensive analysis, including B and V light curves and 11 high-resolution spectra, to verify the orbital period and determine parameters. We used the stellar atmosphere code FASTWIND to obtain stellar parameters and create templates for cross-correlation. We obtained a model to fit the light and radial-velocity curves using the Wilson-Devinney code iteratively and simultaneously. Results. The two components of GU Mon are identical stars of spectral type B1 V with the same mass and temperature. The light curves are typical of an EW-type binary. The spectroscopic and photometric analyses agree on a period of 0.896640 ± 0.000007 d. We determine a mass of 9.0 ± 0.6 M⊙ for each component and for temperatures of 28 000 ± 2000 K. Both values are consistent with the spectral type. The two stars are overfilling their respective Roche lobes, sharing a common envelope and, therefore the orbit is synchronised and circularised. Conclusions. The GU Mon system has a fill-out factor above 0.8, containing two dwarf B-type stars on the main sequence. The two stars are in a very advanced stage of interaction, with their extreme physical similarity likely due to the common envelope. The expected evolution of such a system very probably leads to a merger while still on the main sequence.