8 resultados para One-pot
em Universidad de Alicante
Resumo:
5-Carbapterocarpens, one of them displaying estrogenic activity, were prepared from α-aryltetralones in high yields through a one-pot, BBr3-promoted O-demethylation and cyclization sequence. The key α-aryltetralone intermediates were obtained by direct α-arylation of tetralones with o-alkoxybromoarenes in the presence of Pd2(dba)3 (2.5 mol-%) and tBu3PHBF4 (10 mol-%) as catalysts, together with 2.5 equiv. of KOH in dioxane/H2O (4:1), under microwave irradiation conditions (80 W, 100 °C, 40 min), leading to α-monoaryltetralones in good yields.
Resumo:
Aryl imidazole-1-sulfonates are efficiently cross-coupled with arylboronic acids and potassium aryltrifluoroborates using only 0.5 mol % of oxime palladacycles 1 under aqueous conditions at 110 °C. Under these simple phosphane-free reaction conditions a wide array of biaryl derivatives has been prepared in high yields. This methodology allows in situ phenol sulfonation and one-pot Suzuki arylation as well as the employment of microwave irradiation conditions.
Resumo:
Inexpensive and commercially available nano-powder magnetite is an excellent catalyst for the addition of acid chlorides to internal and terminal alkynes, yielding the corresponding chlorovinyl ketones in good yields. The process has been applied to the synthesis of 5-chloro-4-arylcyclopent-2-enones, 3-aryl-1H-cyclopenta[a]naphthalen-1-ones, and (E)-3-alkylidene-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ones, just by changing the nature of the starting acid chloride or the alkyne. All tested processes elapse with an acceptable or excellent regio- and stereo-selectivity. Moreover, the use of the iridium impregnated on magnetite catalyst permits the integration of the chloroacylation process with a second dehydrochlorination–annulation process to yield, in one-pot, 1-aryl-2,4-dialkylfurans in good yields, independently of the nature of the starting reagents, and including the heteroaromatic ones.
Electrospinning of silica sub-microtubes mats with platinum nanoparticles for NO catalytic reduction
Resumo:
Silica sub-microtubes loaded with platinum nanoparticles have been prepared in flexible non-woven mats using co-axial electrospinning technique. A partially gelated sol made from tetraethyl orthosilicate was used as the silica precursor, and oil was used as the sacrificial template for the hollow channel generation. Platinum has been supported on the wall of the tubes just adding the metallic precursor to the sol–gel, thus obtaining the supported catalyst by one-pot method. The silica tubes have a high aspect ratio with external/internal diameters of 400/200 nm and well-dispersed platinum nanoparticles of around 2 nm. This catalyst showed a high NO conversion with very high selectivity to N2 at mild conditions in the presence of excess oxygen when using C3H6 as reducing agent. This relevant result reveals the potential of this technique to produce nanostructured catalysts onto easy to handle conformations.
Resumo:
The reduction of the band gap of titania is critically important to fully utilize its photocatalytic properties. Two main strategies, i.e. doping and partial reduction of Ti(IV), are the main alternatives available to date. Herein, we report a new synthesis strategy based on one-pot co-condensation of in situ prepared polymetallic titanium-alkoxide complexes with titanium tetrabutoxide. Using this direct reaction, it is possible to introduce organic compounds in the anatase phase, causing site distortions in the crystalline structure of the network. By using this strategy, a yellow and a black titania have been produced, with the latter showing a remarkable photocatalytic activity under visible-light.
Resumo:
Two series of mesoporous hybrid iron(III) complex–silica aerogels were prepared in one-pot synthesis by using the sol–gel coordination chemistry approach. The use of the ligands 3-(2-aminoethylamino)propyltrimethoxysilane and 2-(diphenylphosphino)ethyltriethoxysilane, both with terminal triethoxysilyl groups, were used to incorporate metal complexes in situ into the framework of silica, through their co-condensation with a silicon alkoxide during the aerogel formation. This methodology yielded optically translucent hybrid mesoporous gels with homogeneous metal incorporation and excellent textural properties. The catalytic performance of these materials was tested in the direct amination of allylic alcohols in water as a target reaction, with activities comparable or even higher than those corresponding to the homogeneous iron(III) complex. Furthermore, these catalysts were stable and maintained their catalytic activity after six reaction cycles.
Resumo:
The synthesis of different 3,5-disubstituted isoxazoles and related isoxazolines using choline chloride:urea as deep eutectic solvent (DES) in a one-pot three step reaction has been accomplished successfully. The use of highly nucleophilic functionalized DES did not affect the process where highly electrophilic reagents or intermediates are involved. The presence of DES showed to be essential since the reaction in absence of this media did not proceed. The DES media could be reused up to five times without a detrimental effect on the yield of the reaction. To exemplify the synthetic potential of this methodology, the reaction was scaled up to the gram scale without any noticeable problem. Finally, different isoxazoles were easily transformed into β-aminoenones.
Resumo:
Conspectus: The challenges of the 21st century demand scientific and technological achievements that must be developed under sustainable and environmentally benign practices. In this vein, click chemistry and green chemistry walk hand in hand on a pathway of rigorous principles that help to safeguard the health of our planet against negligent and uncontrolled production. Copper-catalyzed azide–alkyne cycloaddition (CuAAC), the paradigm of a click reaction, is one of the most reliable and widespread synthetic transformations in organic chemistry, with multidisciplinary applications. Nanocatalysis is a green chemistry tool that can increase the inherent effectiveness of CuAAC because of the enhanced catalytic activity of nanostructured metals and their plausible reutilization capability as heterogeneous catalysts. This Account describes our contribution to click chemistry using unsupported and supported copper nanoparticles (CuNPs) as catalysts prepared by chemical reduction. Cu(0)NPs (3.0 ± 1.5 nm) in tetrahydrofuran were found to catalyze the reaction of terminal alkynes and organic azides in the presence of triethylamine at rates comparable to those achieved under microwave heating (10–30 min in most cases). Unfortunately, the CuNPs underwent dissolution under the reaction conditions and consequently could not be recovered. Compelling experimental evidence on the in situ generation of highly reactive copper(I) chloride and the participation of copper(I) acetylides was provided. The supported CuNPs were found to be more robust and efficient catalyst than the unsupported counterpart in the following terms: (a) the multicomponent variant of CuAAC could be applied; (b) the metal loading could be substantially decreased; (c) reactions could be conducted in neat water; and (d) the catalyst could be recovered easily and reutilized. In particular, the catalyst composed of oxidized CuNPs (Cu2O/CuO, 6.0 ± 2.0 nm) supported on carbon (CuNPs/C) was shown to be highly versatile and very effective in the multicomponent and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles in water from organic halides as azido precursors; magnetically recoverable CuNPs (3.0 ± 0.8 nm) supported on MagSilica could be alternatively used for the same purpose under similar conditions. Incorporation of an aromatic substituent at the 1-position of the triazole could be accomplished using the same CuNPs/C catalytic system starting from aryldiazonium salts or anilines as azido precursors. CuNPs/C in water also catalyzed the regioselective double-click synthesis of β-hydroxy-1,2,3-triazoles from epoxides. Furthermore, alkenes could be also used as azido precursors through a one-pot CuNPs/C-catalyzed azidosulfenylation–CuAAC sequential protocol, providing β-methylsulfanyl-1,2,3-triazoles in a stereo- and regioselective manner. In all types of reaction studied, CuNPs/C exhibited better behavior than some commercial copper catalysts with regard to the metal loading, reaction time, yield, and recyclability. Therefore, the results of this study also highlight the utility of nanosized copper in click chemistry compared with bulk copper sources.