3 resultados para Numerical aperture

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a simple yet efficient method for generating in-plane hollow beams with a nearly full circular light shell without the contribution of backward propagating waves. The method relies on modulating the phase in the near field of a centrosymmetric optical wave front, such as that from a high-numerical-aperture focused wave field. We illustrate how beam acceleration may be carried out by using an ultranarrow non-flat meta-surface formed by engineered plasmonic nanoslits. A mirror-symmetric, with respect to the optical axis, circular caustic surface is numerically demonstrated that can be used as an optical bottle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The volume size of a converging wave, which plays a relevant role in image resolution, is governed by the wavelength of the radiation and the numerical aperture (NA) of the wavefront. We designed an ultrathin (λ/8 width) curved metasurface that is able to transform a focused field into a high-NA optical architecture, thus boosting the transverse and (mainly) on-axis resolution. The elements of the metasurface are metal-insulator subwavelength gratings exhibiting extreme anisotropy with ultrahigh index of refraction for TM polarization. Our results can be applied to nanolithography and optical microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spatially accelerating beams are non-diffracting beams whose intensity is localized along curvilinear trajectories, also incomplete circular trajectories, before diffraction broadening governs their propagation. In this paper we report on numerical simulations showing the conversion of a high-numerical-aperture focused beam into a nonparaxial shape-preserving accelerating beam having a beam-width near the diffraction limit. Beam shaping is induced near the focal region by a diffractive optical element that consists of a non-planar subwavelength grating enabling a Bessel signature.