4 resultados para Numerical Evaluation of Special Functions
em Universidad de Alicante
Resumo:
The present paper addresses the analysis of structural vibration transmission in the presence of structural joints. The problem is tackled from a numerical point of view, analyzing some scenarios by using finite element models. The numerical results obtained making use of this process are then compared with those evaluated using the EN 12354 standard vibration reduction index concept. It is shown that, even for the simplest cases, the behavior of a structural joint is complex and evidences the frequency dependence. Comparison with results obtained by empirical formulas reveals that those of the standards cannot accurately reproduce the expected behavior, and thus indicate that alternative complementary calculation procedures are required. A simple methodology to estimate the difference between numerical and standard predictions is here proposed allowing the calculation of an adaptation term that makes both approaches converge. This term was found to be solution-dependent, and thus should be evaluated for each structure.
Resumo:
Recently, many efforts have been made in the academic world to adapt the new degrees to the new European Higher Education Area (EHEA). New technologies have been the most important factor to carry out this adaptation. In particular, the tools 2.0 have been spreading quickly, not just the Web 2.0, but even in all the educational levels. Nevertheless, it is now necessary to evaluate whether all these efforts and all the changes, carried out in order to obtain improved academic performance among students, have provided good results. Therefore, the aim of this paper is focused on studying the impact of the implementation of information and communication technologies (ICTs) in a subject belonging to a Master from the University of Alicante in the academic year (2010-2011). In special, it is an elective course called "Advanced Visual Ergonomics" from the Master of Clinical Optometry and Vision. The methodology used to teach this course differs from the traditional one in many respects. For example, one of the resources used for the development of this course is a blog developed specifically to coordinate a series of virtual works, whose purpose is that the student goes into specific aspects of the current topic. Next, the student participates in an active role by writing a personal assessment on the blog. However, in the course planning, there is an attendance to lessons, where the teacher presents certain issues in a more traditional way, that is, with a lecture supported with audiovisual materials, such as materials generated in powerpoint. To evaluate the quality of the results achieved with this methodology, in this work the personal assessment of the students, who have completed this course during this academic year, are collected. In particular, we want to know their opinion about the used resources, as well as the followed methodology. The tool used to collect this information was a questionnaire. This questionnaire evaluates different aspects of the course: a general opinion, quality of the received information, satisfaction about the followed methodology and the student´s critical awareness. The design of this questionnaire is very important to get conclusive information about the methodology followed in the course. The questionnaire has to have an adequate number of questions; whether it has many questions, it might be boring for the student who would pay no enough attention. The questions should be well-written, with a clear structure and message, to avoid confusion and an ambiguity. The questions should be objectives, without any suggestion for a desired answer. In addition, the questionnaire should be interesting to encourage the student´ s interest. In conclusion, this questionnaire developed for this subject provided good information to evaluate whether the methodology was a useful tool to teach "Advanced Visual Ergonomics". Furthermore, the student´s opinion collected by this questionnaire might be very helpful to improve this didactic resource.
Resumo:
Background: The harmonization of European health systems brings with it a need for tools to allow the standardized collection of information about medical care. A common coding system and standards for the description of services are needed to allow local data to be incorporated into evidence-informed policy, and to permit equity and mobility to be assessed. The aim of this project has been to design such a classification and a related tool for the coding of services for Long Term Care (DESDE-LTC), based on the European Service Mapping Schedule (ESMS). Methods: The development of DESDE-LTC followed an iterative process using nominal groups in 6 European countries. 54 researchers and stakeholders in health and social services contributed to this process. In order to classify services, we use the minimal organization unit or “Basic Stable Input of Care” (BSIC), coded by its principal function or “Main Type of Care” (MTC). The evaluation of the tool included an analysis of feasibility, consistency, ontology, inter-rater reliability, Boolean Factor Analysis, and a preliminary impact analysis (screening, scoping and appraisal). Results: DESDE-LTC includes an alpha-numerical coding system, a glossary and an assessment instrument for mapping and counting LTC. It shows high feasibility, consistency, inter-rater reliability and face, content and construct validity. DESDE-LTC is ontologically consistent. It is regarded by experts as useful and relevant for evidence-informed decision making. Conclusion: DESDE-LTC contributes to establishing a common terminology, taxonomy and coding of LTC services in a European context, and a standard procedure for data collection and international comparison.
Resumo:
In the present work, a three-dimensional (3D) formulation based on the method of fundamental solutions (MFS) is applied to the study of acoustic horns. The implemented model follows and extends previous works that only considered two-dimensional and axisymmetric horn configurations. The more realistic case of 3D acoustic horns with symmetry regarding two orthogonal planes is addressed. The use of the domain decomposition technique with two interconnected sub-regions along a continuity boundary is proposed, allowing for the computation of the sound pressure generated by an acoustic horn installed on a rigid screen. In order to reduce the model discretization requirements for these cases, Green’s functions derived with the image source methodology are adopted, automatically accounting for the presence of symmetry conditions. A strategy for the calculation of an optimal position of the virtual sources used by the MFS to define the solution is also used, leading to improved reliability and flexibility of the proposed method. The responses obtained by the developed model are compared to reference solutions, computed by well-established models based on the boundary element method. Additionally, numerically calculated acoustic parameters, such as directivity and beamwidth, are compared with those evaluated experimentally.