4 resultados para Nuclear spin.
em Universidad de Alicante
Resumo:
Detection of a single nuclear spin constitutes an outstanding problem in different fields of physics such as quantum computing or magnetic imaging. Here we show that the energy levels of a single nuclear spin can be measured by means of inelastic electron tunneling spectroscopy (IETS). We consider two different systems, a magnetic adatom probed with scanning tunneling microscopy and a single Bi dopant in a silicon nanotransistor. We find that the hyperfine coupling opens new transport channels which can be resolved at experimentally accessible temperatures. Our simulations evince that IETS yields information about the occupations of the nuclear spin states, paving the way towards transport-detected single nuclear spin resonance.
Resumo:
We study single electron transport across a single Bi dopant in a silicon nanotransistor to assess how the strong hyperfine coupling with the Bi nuclear spin I = 9/2 affects the transport characteristics of the device. In the sequential tunneling regime we find that at, temperatures in the range of 100 mK, dI/dV curves reflect the zero field hyperfine splitting as well as its evolution under an applied magnetic field. Our non-equilibrium quantum simulations show that nuclear spins can be partially polarized parallel or antiparallel to the electronic spin just tuning the applied bias.
Resumo:
We consider two intrinsic sources of noise in ultra-sensitive magnetic field sensors based on MgO magnetic tunnel junctions, coming both from 25 Mg nuclear spins (I = 5/2, 10% natural abundance) and S = 1 Mg-vacancies. While nuclear spins induce noise peaked in the MHz frequency range, the vacancies noise peaks in the GHz range. We find that the nuclear noise in submicron devices has a similar magnitude than the 1/f noise, while the vacancy-induced noise dominates in the GHz range. Interestingly, the noise spectrum under a finite magnetic field gradient may provide spatial information about the spins in the MgO layer.
Resumo:
The lack of isolated X-ray pulsars with spin periods longer than 12 s raises the question of where the population of evolved high-magnetic-field neutron stars has gone. Unlike canonical radiopulsars, X-ray pulsars are not subject to physical limits to the emission mechanism nor observational biases against the detection of sources with longer periods. Here we show that a highly resistive layer in the innermost part of the crust of neutron stars naturally limits the spin period to a maximum value of about 10–20 s. This highly resistive layer is expected if the inner crust is amorphous and heterogeneous in nuclear charge, possibly owing to the existence of a nuclear ‘pasta’ phase. Our findings suggest that the maximum period of isolated X-ray pulsars may be the first observational evidence for an amorphous inner crust, whose properties can be further constrained by future X-ray timing missions combined with more detailed models.