3 resultados para Nuclear alterations

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. The DBA/2J mouse line develops essential iris atrophy, pigment dispersion, and glaucomatous age-related changes, including an increase of IOP, optic nerve atrophy, and retinal ganglion cell (RGC) death. The aim of this study was to evaluate possible morphological changes in the outer retina of the DBA/2J mouse concomitant with disease progression and aging, based on the reduction of both the a- and b-waves and photopic flicker ERGs in this mouse line. Methods. Vertically sectioned DBA/2J mice retinas were evaluated at 3, 8, and 16 months of age using photoreceptor, horizontal, and bipolar cell markers. Sixteen-month-old C57BL/6 mice retinas were used as controls. Results. The DBA/2J mice had outer retinal degeneration at all ages, with the most severe degeneration in the oldest retinas. At 3 months of age, the number of photoreceptor cells and the thickness of the OPL were reduced. In addition, there was a loss of horizontal and ON-bipolar cell processes. At 8 months of age, RGC degeneration occurred in patches, and in the outer retina overlying these patches, cone morphology was impaired with a reduction in size as well as loss of outer segments and growth of horizontal and bipolar cell processes into the outer nuclear layer. At 16 months of age, connectivity between photoreceptors and horizontal and bipolar cell processes overlying these patches was lost. Conclusions. Retinal degeneration in DBA/2J mice includes photoreceptor death, loss of bipolar and horizontal cell processes, and loss of synaptic contacts in an aging-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a group of progressive inherited retinal dystrophies that cause visual impairment as a result of photoreceptor cell death. RP is heterogeneous, both clinically and genetically making difficult to establish precise genotype–phenotype correlations. In a Spanish family with autosomal recessive RP (arRP), homozygosity mapping and whole-exome sequencing led to the identification of a homozygous mutation (c.358_359delGT; p.Ala122Leufs*2) in the ZNF408 gene. A screening performed in 217 additional unrelated families revealed another homozygous mutation (c.1621C>T; p.Arg541Cys) in an isolated RP case. ZNF408 encodes a transcription factor that harbors 10 predicted C2H2-type fingers thought to be implicated in DNA binding. To elucidate the ZNF408 role in the retina and the pathogenesis of these mutations we have performed different functional studies. By immunohistochemical analysis in healthy human retina, we identified that ZNF408 is expressed in both cone and rod photoreceptors, in a specific type of amacrine and ganglion cells, and in retinal blood vessels. ZNF408 revealed a cytoplasmic localization and a nuclear distribution in areas corresponding with the euchromatin fraction. Immunolocalization studies showed a partial mislocalization of the p.Arg541Cys mutant protein retaining part of the WT protein in the cytoplasm. Our study demonstrates that ZNF408, previously associated with Familial Exudative Vitreoretinopathy (FEVR), is a new gene causing arRP with vitreous condensations supporting the evidence that this protein plays additional functions into the human retina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.