3 resultados para Nora
em Universidad de Alicante
Resumo:
Current model-driven Web Engineering approaches (such as OO-H, UWE or WebML) provide a set of methods and supporting tools for a systematic design and development of Web applications. Each method addresses different concerns using separate models (content, navigation, presentation, business logic, etc.), and provide model compilers that produce most of the logic and Web pages of the application from these models. However, these proposals also have some limitations, especially for exchanging models or representing further modeling concerns, such as architectural styles, technology independence, or distribution. A possible solution to these issues is provided by making model-driven Web Engineering proposals interoperate, being able to complement each other, and to exchange models between the different tools. MDWEnet is a recent initiative started by a small group of researchers working on model-driven Web Engineering (MDWE). Its goal is to improve current practices and tools for the model-driven development of Web applications for better interoperability. The proposal is based on the strengths of current model-driven Web Engineering methods, and the existing experience and knowledge in the field. This paper presents the background, motivation, scope, and objectives of MDWEnet. Furthermore, it reports on the MDWEnet results and achievements so far, and its future plan of actions.
Resumo:
Ternary nano-biocomposite films based on poly(lactic acid) (PLA) with modified cellulose nanocrystals (s-CNC) and synthesized silver nanoparticles (Ag) have been prepared and characterized. The functionalization of the CNC surface with an acid phosphate ester of ethoxylated nonylphenol favoured its dispersion in the PLA matrix. The positive effects of the addition of cellulose and silver on the PLA barrier properties were confirmed by reductions in the water permeability (WVP) and oxygen transmission rate (OTR) of the films tested. The migration level of all nano-biocomposites in contact with food simulants were below the permitted limits in both non-polar and polar simulants. PLA nano-biocomposites showed a significant antibacterial activity influenced by the Ag content, while composting tests showed that the materials were visibly disintegrated after 15 days with the ternary systems showing the highest rate of disintegration under composting conditions.
Resumo:
In this paper, absolute water permeability is estimated from capillary imbibition and pore structure for 15 sedimentary rock types. They present a wide range of petrographic characteristics that provide degrees of connectivity, porosities, pore size distributions, water absorption coefficients by capillarity and water permeabilities. A statistical analysis shows strong correlations among the petrophysical parameters of the studied rocks. Several fundamental properties are fitted into different linear and multiple expressions where water permeability is expressed as a generalized function of the properties. Some practical aspects of these correlations are highlighted in order to use capillary imbibition tests to estimate permeability. The permeability–porosity relation is discussed in the context of the influence of pore connectivity and wettability. As a consequence, we propose a generalized model for permeability that includes information about water fluid rate (water absorption coefficient by capillarity), water properties (density and viscosity), wetting (interfacial tension and contact angle) and pore structure (pore radius and porosity). Its application is examined in terms of the type of pores that contribute to water transport and wettability. The results indicate that the threshold pore radius, in which water percolates through rock, achieves the best description of the pore system. The proposed equation is compared against Carman–Kozeny's and Katz–Thompson's equations. The proposed equation achieves very accurate predictions of the water permeability in the range of 0.01 to 1000 mD.