5 resultados para Nonlinear static analysis
em Universidad de Alicante
Resumo:
Several studies have analyzed discretionary accruals to address earnings-smoothing behaviors in the banking industry. We argue that the characteristic link between accruals and earnings may be nonlinear, since both the incentives to manipulate income and the practical way to do so depend partially on the relative size of earnings. Given a sample of 15,268 US banks over the period 1996–2011, the main results in this paper suggest that, depending on the size of earnings, bank managers tend to engage in earnings-decreasing strategies when earnings are negative (“big-bath”), use earnings-increasing strategies when earnings are positive, and use provisions as a smoothing device when earnings are positive and substantial (“cookie-jar” accounting). This evidence, which cannot be explained by the earnings-smoothing hypothesis, is consistent with the compensation theory. Neglecting nonlinear patterns in the econometric modeling of these accruals may lead to misleading conclusions regarding the characteristic strategies used in earnings management.
Resumo:
In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.
Resumo:
The Lomb periodogram has been traditionally a tool that allows us to elucidate if a frequency turns out to be important for explaining the behaviour of a given time series. Many linear and nonlinear reiterative harmonic processes that are used for studying the spectral content of a time series take into account this periodogram in order to avoid including spurious frequencies in their models due to the leakage problem of energy from one frequency to others. However, the estimation of the periodogram requires long computation time that makes the harmonic analysis slower when we deal with certain time series. Here we propose an algorithm that accelerates the extraction of the most remarkable frequencies from the periodogram, avoiding its whole estimation of the harmonic process at each iteration. This algorithm allows the user to perform a specific analysis of a given scalar time series. As a result, we obtain a functional model made of (1) a trend component, (2) a linear combination of Fourier terms, and (3) the so-called mixed secular terms by reducing the computation time of the estimation of the periodogram.
Resumo:
The use of RGB-D sensors for mapping and recognition tasks in robotics or, in general, for virtual reconstruction has increased in recent years. The key aspect of these kinds of sensors is that they provide both depth and color information using the same device. In this paper, we present a comparative analysis of the most important methods used in the literature for the registration of subsequent RGB-D video frames in static scenarios. The analysis begins by explaining the characteristics of the registration problem, dividing it into two representative applications: scene modeling and object reconstruction. Then, a detailed experimentation is carried out to determine the behavior of the different methods depending on the application. For both applications, we used standard datasets and a new one built for object reconstruction.
Resumo:
The San Julián’s stone is the main material used to build the most important historical buildings in Alicante city (Spain). This paper describes the analysis developed to obtain the relationship between the static and the dynamic modulus of this sedimentary rock heated at different temperatures. The rock specimens have been subjected to heating processes at different temperatures to produce different levels of weathering on 24 specimens. The static and dynamic modulus has been measured for every specimen by means of the ISRM standard and ultrasonic tests, respectively. Finally, two analytic formulas are proposed for the relationship between the static and the dynamic modulus for this stone. The results have been compared with some relationships proposed by different researchers for other types of rock. The expressions presented in this paper can be useful for the analysis, using non-destructive techniques, of the integrity level of historical constructions built with San Julián’s stone affected by fires.