5 resultados para Nitric acid.

em Universidad de Alicante


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Results of a systematic study concerning non-spectral interferences from sulfuric acid containing matrices on a large number of elements in inductively coupled plasma–mass spectrometry (ICP-MS) are presented in this work. The signals obtained with sulfuric acid solutions of different concentrations (up to 5% w w− 1) have been compared with the corresponding signals for a 1% w w− 1− nitric acid solution at different experimental conditions (i.e., sample uptake rates, nebulizer gas flows and r.f. powers). The signals observed for 128Te+, 78Se+ and 75As+ were significantly higher when using sulfuric acid matrices (up to 2.2-fold for 128Te+ and 78Se+ and 1.8-fold for 75As+ in the presence of 5 w w-1 sulfuric acid) for the whole range of experimental conditions tested. This is in agreement with previously reported observations. The signal for 31P+ is also higher (1.1-fold) in the presence of sulfuric acid. The signal enhancements for 128Te+, 78Se+, 75As+ and 31P+ are explained in relation to an increase in the analyte ion population as a result of charge transfer reactions involving S+ species in the plasma. Theoretical data suggest that Os, Sb, Pt, Ir, Zn and Hg could also be involved in sulfur-based charge transfer reactions, but no experimental evidence has been found. The presence of sulfuric acid gives rise to lower ion signals (about 10–20% lower) for the other nuclides tested, thus indicating the negative matrix effect caused by changes in the amount of analyte loading of the plasma. The elemental composition of a certified low-density polyethylene sample (ERM-EC681K) was determined by ICP-MS after two different sample digestion procedures, one of them including sulfuric acid. Element concentrations were in agreement with the certified values, irrespective of the acids used for the digestion. These results demonstrate that the use of matrix-matched standards allows the accurate determination of the tested elements in a sulfuric acid matrix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH3 breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic and less stable oxygen surface groups. Similar experiments using moist air clearly show that the effect of humidity highly depends on the surface chemistry of the carbon used. Moisture highly improves the adsorption behavior for samples with a low concentration of oxygen functionalities, probably due to the preferential adsorption of ammonia via dissolution into water. On the contrary, moisture exhibits a small effect on samples with a rich surface chemistry due to the preferential adsorption pathway via Brønsted and Lewis acid centers from the carbon surface. FTIR analyses of the exhausted oxidized samples confirm both the formation of NH4+ species interacting with the Brønsted acid sites, together with the presence of NH3 species coordinated, through the lone pair electron, to Lewis acid sites on the graphene layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) has been employed to carry out the determination of both major anions and cations in water samples. The anion quantification has been performed by means of a new automatic accessory. In this device chloride has been determined by continuously adding a silver nitrate solution. As a result solid silver chloride particles are formed and retained on a nylon filter inserted in the line. The emission intensity is read at a silver characteristic wavelength. By plotting the drop in silver signal versus the chloride concentration, a straight line is obtained. As regards bicarbonate, this anion has been on-line transformed into carbon dioxide with the help of a 2.0 mol L−1 nitric acid stream. Carbon signal is linearly related with bicarbonate concentration. Finally, information about sulfate concentration has been achieved by means of the measurement of sulfur emission intensity. All the steps have been simultaneously and automatically performed. With this setup detection limits have been 1.0, 0.4 and 0.09 mg L−1 for chloride, bicarbonate and sulfate, respectively. Furthermore, it affords good precision with RSD below 6 %. Cation (Ca, Mg, Na and K) concentration, in turn, has been obtained by simultaneously reading the emission intensity at characteristic wavelengths. The obtained limits of detection have been 8 × 10−3, 2 × 10−3, 8 × 10−4 and 10−2 mg L−1 for sodium, potassium, magnesium and calcium, respectively. As regards sample throughput, about 30 samples h−1 can be analysed. Validation results have revealed that the obtained concentrations for these anions are not significantly different as compared to the data provided by conventional methods. Finally, by considering the data for anions and cations, precise ion balances have been obtained for well and mineral water samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrogen functionalization of a highly microporous activated carbon (BET surface area higher than 3000 m2/g) has been achieved using the following sequence of treatments: (i) chemical oxidation using concentrated nitric acid, (ii) amidation by acyl chloride substitution with NH4NO3 and (iii) amination by Hoffman rearrangement. This reaction pathway yielded amide and amine functional groups, and a total nitrogen content higher than 3 at.%. It is achieved producing only a small decrease (20%) of the starting microporosity, being most of it related to the initial wet oxidation of the activated carbon. Remarkably, nitrogen aromatic rings were also formed as a consequence of secondary cyclation reactions. The controlled step-by-step modification of the surface chemistry allowed to assess the influence of individual nitrogen surface groups in the electrochemical performance in 1 M H2SO4 of the carbon materials. The largest gravimetric capacitance was registered for the pristine activated carbon due to its largest apparent surface area. The nitrogen-containing activated carbons showed the highest surface capacitances. Interestingly, the amidated activated carbon showed the superior capacitance retention due to the presence of functional groups (such as lactams, imides and pyrroles) that enhance electrical conductivity through their electron-donating properties, showing a capacitance of 83 F/g at 50 A/g.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma–atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w− 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.