2 resultados para Nerve anatomy

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential influence of photoreceptor degeneration on retinal ganglion cell survival, and to evaluate functionality, we took advantage of the optic nerve section mouse model. Methods: Surviving retinal ganglion cells were double-stained by exposing both superior colliculi to fluorogold, and by applying dextran-tetramethylrhodamine to the injured optic nerve stump. To assess retinal function in wild-type animals, electroretinograms were recorded on the injured eyes and compared with the contralateral. Similar labelling experiments were carried out on retinal degeneration 1 mice. Surviving retinal ganglion cells were counted 21 days after axotomy and compared with wild-type mice. No functional experiments were performed on retinal degeneration 1 animals because they do not develop normal electroretinographical responses. Results: A significant decrease in retinal ganglion cell density was observed 6 days after axotomy in the wild type. Functional studies revealed that, in scotopic conditions, axotomy induced a significant amplitude decrease in the positive scotopic threshold response component of the electroretinogram. Such decrease paralleled cell loss, suggesting it may be an appropriate technique to evaluate functionality. When comparing retinal ganglion cell densities in wild-type and retinal degeneration 1 mice, a significant greater survival was observed on the latter. Conclusions: After optic nerve section, electroretinographical recordings exhibited a progressive decrease in the amplitude of the positive scotopic threshold response wave, reflecting ganglion cell loss. Interestingly, rod degeneration seemed, at least initially, to protect from axotomy-driven damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the possible associations between corneal biomechanical parameters, optic disc morphology, and retinal nerve fiber layer (RNFL) thickness in healthy white Spanish children. Methods: This cross-sectional study included 100 myopic children and 99 emmetropic children as a control group, ranging in age from 6 to 17 years. The Ocular Response Analyzer was used to measure corneal hysteresis (CH) and corneal resistance factor. The optic disc morphology and RNFL thickness were assessed using posterior segment optical coherence tomography (Cirrus HD-OCT). The axial length was measured using an IOLMaster, whereas the central corneal thickness was measured by anterior segment optical coherence tomography (Visante OCT). Results: The mean (±SD) age and spherical equivalent were 12.11 (±2.76) years and −3.32 (±2.32) diopters for the myopic group and 11.88 (±2.97) years and +0.34 (±0.41) diopters for the emmetropic group. In a multivariable mixed-model analysis in myopic children, the average RNFL thickness and rim area correlated positively with CH (p = 0.007 and p = 0.001, respectively), whereas the average cup-to-disc area ratio correlated negatively with CH (p = 0.01). We did not observe correlation between RNFL thickness and axial length (p = 0.05). Corneal resistance factor was only positively correlated with the rim area (p = 0.001). The central corneal thickness did not correlate with the optic nerve parameters or with RNFL thickness. These associations were not found in the emmetropic group (p > 0.05 for all). Conclusions: The corneal biomechanics characterized with the Ocular Response Analyzer system are correlated with the optic disc profile and RNFL thickness in myopic children. Low CH values may indicate a reduction in the viscous dampening properties of the cornea and the sclera, especially in myopic children.