2 resultados para Negotiation Support Environment

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Historically, supergiant (sg)B[e] stars have been difficult to include in theoretical schemes for the evolution of massive OB stars. Aims. The location of Wd1-9 within the coeval starburst cluster Westerlund 1 means that it may be placed into a proper evolutionary context and we therefore aim to utilise a comprehensive multiwavelength dataset to determine its physical properties and consequently its relation to other sgB[e] stars and the global population of massive evolved stars within Wd1. Methods. Multi-epoch R- and I-band VLT/UVES and VLT/FORS2 spectra are used to constrain the properties of the circumstellar gas, while an ISO-SWS spectrum covering 2.45−45μm is used to investigate the distribution, geometry and composition of the dust via a semi-analytic irradiated disk model. Radio emission enables a long term mass-loss history to be determined, while X-ray observations reveal the physical nature of high energy processes within the system. Results. Wd1-9 exhibits the rich optical emission line spectrum that is characteristic of sgB[e] stars. Likewise its mid-IR spectrum resembles those of the LMC sgB[e] stars R66 and 126, revealing the presence of equatorially concentrated silicate dust, with a mass of ~10−4M⊙. Extreme historical and ongoing mass loss (≳ 10−4M⊙yr−1) is inferred from the radio observations. The X-ray properties of Wd1-9 imply the presence of high temperature plasma within the system and are directly comparable to a number of confirmed short-period colliding wind binaries within Wd1. Conclusions. The most complete explanation for the observational properties of Wd1-9 is that it is a massive interacting binary currently undergoing, or recently exited from, rapid Roche-lobe overflow, supporting the hypothesis that binarity mediates the formation of (a subset of) sgB[e] stars. The mass loss rate of Wd1-9 is consistent with such an assertion, while viable progenitor and descendent systems are present within Wd1 and comparable sgB[e] binaries have been identified in the Galaxy. Moreover, the rarity of sgB[e] stars - only two examples are identified from a census of ~ 68 young massive Galactic clusters and associations containing ~ 600 post-Main Sequence stars - is explicable given the rapidity (~ 104yr) expected for this phase of massive binary evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present analysis of 100 ks contiguous XMM-Newton data of the prototypical wind accretor Vela X-1. The observation covered eclipse egress between orbital phases 0.134 and 0.265, during which a giant flare took place, enabling us to study the spectral properties both outside and during the flare. This giant flare with a peak luminosity of 3.92+0.42-0.09 × 1037 erg s-1 allows estimates of the physical parameters of the accreted structure with a mass of ~1021 g. We have been able to model several contributions to the observed spectrum with a phenomenological model formed by three absorbed power laws plus three emission lines. After analysing the variations with orbital phase of the column density of each component, as well as those in the Fe and Ni fluorescence lines, we provide a physical interpretation for each spectral component. Meanwhile, the first two components are two aspects of the principal accretion component from the surface of the neutron star, the third component seems to be the X-ray light echo formed in the stellar wind of the companion.