4 resultados para Natural Sources of Ambient Noise,Localization and Tracking Systems
em Universidad de Alicante
Resumo:
Past and recent observations have shown that the local site conditions significantly affect the behavior of seismic waves and its potential to cause destructive earthquakes. Thus, seismic microzonation studies have become crucial for seismic hazard assessment, providing local soil characteristics that can help to evaluate the possible seismic effects. Among the different methods used for estimating the soil characteristics, the ones based on ambient noise measurements, such as the H/V technique, become a cheap, non-invasive and successful way for evaluating the soil properties along a studied area. In this work, ambient noise measurements were taken at 240 sites around the Doon Valley, India, in order to characterize the sediment deposits. First, the H/V analysis has been carried out to estimate the resonant frequencies along the valley. Subsequently, some of this H/V results have been inverted, using the neighborhood algorithm and the available geotechnical information, in order to provide an estimation of the S-wave velocity profiles at the studied sites. Using all these information, we have characterized the sedimentary deposits in different areas of the Doon Valley, providing the resonant frequency, the soil thickness, the mean S-wave velocity of the sediments, and the mean S-wave velocity in the uppermost 30 m.
Resumo:
Objective. Describe acceptability of pandemic A(H1N1) influenza vaccination by Essential Community Workers (ECWs) from Alicante province (Spain) in January 2010. Evaluate the correlation with attitudes, beliefs, professional advice and information broadcasted by media. Method. In this cross-sectional study, face-to-face interviews were conducted with 742 ECWs to assess their attitudes towards vaccination against the pandemic influenza strain. A multivariable regression model was made to adjust the Odds Ratios (ORs). Results. Some ECWs reported having been vaccinated with seasonal vaccine, 21.5% (95%IC 18.6–24.9); only 15.4% (95%IC 12.8–18.4) with the pandemic one. ECWs vaccinated regularly against seasonal flu (OR 5.1; 95%IC 2.9–9.1), those who considered pandemic influenza as a severe or more serious disease than seasonal flu (OR 3.8; 95%IC 2.1–6.7) and those who never had doubts about vaccine safety (OR 3.7; 95%IC2.1–6.7) had a better acceptance of pandemic vaccine. Finally, 78.7% (95%IC 75.1–81.4) had doubts about pandemic vaccine's effectiveness. Conclusion. The vast amount of information provided by the media did not seem to be decisive to prevent doubts or to improve the acceptability of the vaccine in ECWs. Professional advice should be the focus of interest in future influenza vaccination campaigns. These results should be taken into account by health authorities.
Resumo:
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) have been studied for several decades and are well-known as unintentionally generated persistent organic pollutants (POPs), which pose serious health and environmental risks on a global scale1. Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/F) have similar properties and effects to PCDD/F, as they are structural analogs with all the chlorine atoms substituted by bromine atoms. PBDD/F have been found in various matrices such as air, sediments, marine products, and human adipose samples.
Resumo:
tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.