3 resultados para Nanoporous materials
em Universidad de Alicante
Resumo:
Two magnetically separable Fe3O4/SiO2 (aerogel and MSU-X) composites with very low Fe3O4 content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe3O4 nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe3O4 NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe3O4 NPs content (ca. 1 wt%). These novel hybrid Fe3O4/SiO2 materials have been tested for the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) with hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe3O4/silica aerogel as compared to the Fe3O4 NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe3O4/SiO2 systems.
Resumo:
In the field of energy saving, finding composite materials with the ability of coloring upon both illumination and change of the applied electrode potential keeps on being an important goal. In this context, chemical bath deposition of Ni(OH)2 into nanoporous TiO2 thin films supported on conducting glass leads to electrodes showing both conventional electrochromic behavior (from colorless to dark brown and vice versa) together with photochromism at constant applied potential. The latter phenomenon, reported here for the first time, is characterized by fast and reversible coloration upon UV illumination. The bleaching kinetics shows first order behavior with respect to the NiIII centers in the film, and an order 1.2 with respect to electrons in the TiO2 film. From a more applied point of view, this study opens up the possibility of having two-mode smart windows showing not only conventional electrochromism but also reversible darkening upon illumination.
Resumo:
A novel synthesis method for ordered mesoporous carbons is presented. The inverse replication of a silica template was achieved using the carbonization of sucrose within mesoporous KIT-6. Instead of liquid acid etching, as in classical nanocasting, a novel dry chlorine etching procedure for template removal is presented for the first time. The resultant ordered mesostructured carbon material outperforms carbons obtained by conventional hard templating with respect to high specific micro- and mesopore volumes (0.6 and 1.6 cm3 g−1, respectively), due to the presence of a hierarchical pore system. A high specific surface area of 1671 m2 g−1 was achieved, rendering this synthesis route a highly convenient method to produce ordered mesoporous carbons.