3 resultados para NORMALIZED DIFFERENCE VEGETATION INDEX
em Universidad de Alicante
Resumo:
In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.
Resumo:
The present paper addresses the analysis of structural vibration transmission in the presence of structural joints. The problem is tackled from a numerical point of view, analyzing some scenarios by using finite element models. The numerical results obtained making use of this process are then compared with those evaluated using the EN 12354 standard vibration reduction index concept. It is shown that, even for the simplest cases, the behavior of a structural joint is complex and evidences the frequency dependence. Comparison with results obtained by empirical formulas reveals that those of the standards cannot accurately reproduce the expected behavior, and thus indicate that alternative complementary calculation procedures are required. A simple methodology to estimate the difference between numerical and standard predictions is here proposed allowing the calculation of an adaptation term that makes both approaches converge. This term was found to be solution-dependent, and thus should be evaluated for each structure.
Resumo:
From a set of gonioapparent automotive samples from different manufacturers we selected 28 low-chroma color pairs with relatively small color differences predominantly in lightness. These color pairs were visually assessed with a gray scale at six different viewing angles by a panel of 10 observers. Using the Standardized Residual Sum of Squares (STRESS) index, the results of our visual experiment were tested against predictions made by 12 modern color-difference formulas. From a weighted STRESS index accounting for the uncertainty in visual assessments, the best prediction of our whole experiment was achieved using AUDI2000, CAM02-SCD, CAM02-UCS and OSA-GP-Euclidean color-difference formulas, which were no statistically significant different among them. A two-step optimization of the original AUDI2000 color-difference formula resulted in a modified AUDI2000 formula which performed both, significantly better than the original formula and below the experimental inter-observer variability. Nevertheless the proposal of a new revised AUDI2000 color-difference formula requires additional experimental data.