7 resultados para NIR spectroscopy. Hair. Forensic analysis. PCA. Nicotine
em Universidad de Alicante
Resumo:
This work presents a forensic analysis of buildings affected by mining subsidence, which is based on deformation data obtained by Differential Interferometry (DInSAR). The proposed test site is La Union village (Murcia, SE Spain) where subsidence was triggered in an industrial area due to the collapse of abandoned underground mining labours occurred in 1998. In the first part of this work the study area was introduced, describing the spatial and temporal evolution of ground subsidence, through the elaboration of a cracks map on the buildings located within the affected area. In the second part, the evolution of the most significant cracks found in the most damaged buildings was monitored using biaxial extensometric units and inclinometers. This article describes the work performed in the third part, where DInSAR processing of satellite radar data, available between 1998 and 2008, has permitted to determine the spatial and temporal evolution of the deformation of all the buildings of the study area in a period when no continuous in situ instrumental data is available. Additionally, the comparison of these results with the forensic data gathered in the 2005–2008 period, reveal that there is a coincidence between damaged buildings, buildings where extensometers register significant movements of cracks, and buildings deformation estimated from radar data. As a result, it has been demonstrated that the integration of DInSAR data into forensic analysis methodologies contributes to improve significantly the assessment of the damages of buildings affected by mining subsidence.
Resumo:
A combined chemometrics-metabolomics approach [excitation–emission matrix (EEM) fluorescence spectroscopy, nuclear magnetic resonance (NMR) and high performance liquid chromatography–mass spectrometry (HPLC–MS)] was used to analyse the rhizodeposition of the tritrophic system: tomato, the plant-parasitic nematode Meloidogyne javanica and the nematode-egg parasitic fungus Pochonia chlamydosporia. Exudates from M. javanica roots were sampled at root penetration (early) and gall development (late). EMM indicated that late root exudates from M. javanica treatments contained more aromatic amino acid compounds than the rest (control, P. chlamydosporia or P. chlamydosporia and M. javanica). 1H NMR showed that organic acids (acetate, lactate, malate, succinate and formic acid) and one unassigned aromatic compound (peak no. 22) were the most relevant metabolites in root exudates. Robust principal component analysis (PCA) grouped early exudates for nematode (PC1) or fungus presence (PC3). PCA found (PC1, 73.31 %) increased acetate and reduced lactate and an unassigned peak no. 22 characteristic of M. javanica root exudates resulting from nematode invasion and feeding. An increase of peak no. 22 (PC3, 4.82 %) characteristic of P. chlamydosporia exudates could be a plant “primer” defence. In late ones in PC3 (8.73 %) the presence of the nematode grouped the samples. HPLC–MS determined rhizosphere fingerprints of 16 (early) and 25 (late exudates) m/z signals, respectively. Late signals were exclusive from M. javanica exudates confirming EEM and 1H NMR results. A 235 m/z signal reduced in M. javanica root exudates (early and late) could be a repressed plant defense. This metabolomic approach and other rhizosphere -omics studies could help to improve plant growth and reduce nematode damage sustainably.
Resumo:
This paper deals with the stabilisation of low softening point pitch fibres obtained from petroleum pitches using HNO3 as oxidising agent. This method presents some advantages compared with conventional methods: pitches with low softening point (SP) can be used to prepare carbon fibres (CF), the stabilisation time has been reduced, the CF yields are similar to those obtained after general methods of stabilisation, and the initial treatments to increase SP when low SP pitches are used to prepare CF, are avoided. The parent pitches were characterised by different techniques such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), elemental analysis and solvent extraction with toluene and quinoline. The interaction between HNO3 and the pitch fibres, as well as the changes occurring during the heat treatment, have been followed by DRIFTS.
Resumo:
Colors of special-effect coatings have strong dependence on illumination/viewing geometry and an appealing appearance. An open question is to ask about the minimum number of measurement geometries required to completely characterize their observed color shift. A recently published principal components analysis (PCA)-based procedure to estimate the color of special-effect coatings at any geometry from measurements at a reduced set of geometries was tested in this work by using the measurement geometries of commercial portable multiangle spectrophotometers X-Rite MA98, Datacolor FX10, and BYK-mac as reduced sets. The performance of the proposed PCA procedure for the color-shift estimation for these commercial geometries has been examined for 15 special-effect coatings. Our results suggest that for rendering the color appearance of 3D objects covered with special-effect coatings, the color accuracy obtained with this procedure may be sufficient. This is the case especially if geometries of X-Rite MA98 or Datacolor FX10 are used.
Resumo:
The low temperature water–gas shift (WGS) reaction has been studied over carbon-supported nickel catalysts promoted by ceria. To this end, cerium oxide has been dispersed (at different loadings: 10, 20, 30 and 40 wt.%) on the activated carbon surface with the aim of obtaining small ceria particles and a highly available surface area. Furthermore, carbon- and ceria-supported nickel catalysts have also been studied as references. A combination of N2 adsorption analysis, powder X-ray diffraction, temperature-programmed reduction with H2, X-ray photoelectron spectroscopy and TEM analysis were used to characterize the Ni–CeO2 interactions and the CeO2 dispersion over the activated carbon support. Catalysts were tested in the low temperature WGS reaction with two different feed gas mixtures: the idealized one (with only CO and H2O) and a slightly harder one (with CO, CO2, H2, and H2O). The obtained results show that there is a clear effect of the ceria loading on the catalytic activity. In both cases, catalysts with 20 and 10 wt.% CeO2 were the most active materials at low temperature. On the other hand, Ni/C shows a lower activity, this assessing the determinant role of ceria in this reaction. Methane, a product of side reactions, was observed in very low amounts, when CO2 and H2 were included in the WGS feed. Nevertheless, our data indicate that the methanation process is mainly due to CO2, and no CO consumption via methanation takes place at the relevant WGS temperatures. Finally, a stability test was carried out, obtaining CO conversions greater than 40% after 150 h of reaction.
Resumo:
A new methodology is proposed to produce subsidence activity maps based on the geostatistical analysis of persistent scatterer interferometry (PSI) data. PSI displacement measurements are interpolated based on conditional Sequential Gaussian Simulation (SGS) to calculate multiple equiprobable realizations of subsidence. The result from this process is a series of interpolated subsidence values, with an estimation of the spatial variability and a confidence level on the interpolation. These maps complement the PSI displacement map, improving the identification of wide subsiding areas at a regional scale. At a local scale, they can be used to identify buildings susceptible to suffer subsidence related damages. In order to do so, it is necessary to calculate the maximum differential settlement and the maximum angular distortion for each building of the study area. Based on PSI-derived parameters those buildings in which the serviceability limit state has been exceeded, and where in situ forensic analysis should be made, can be automatically identified. This methodology has been tested in the city of Orihuela (SE Spain) for the study of historical buildings damaged during the last two decades by subsidence due to aquifer overexploitation. The qualitative evaluation of the results from the methodology carried out in buildings where damages have been reported shows a success rate of 100%.
Resumo:
The Santas Justa and Rufina Gothic church (fourteenth century) has suffered several physical, mechanical, chemical, and biochemical types of pathologies along its history: rock alveolization, efflorescence, biological activity, and capillary ascent of groundwater. However, during the last two decades, a new phenomenon has seriously affected the church: ground subsidence caused by aquifer overexploitation. Subsidence is a process that affects the whole Vega Baja of the Segura River basin and consists of gradual sinking in the ground surface caused by soil consolidation due to a pore pressure decrease. This phenomenon has been studied by differential synthetic aperture radar interferometry techniques, which illustrate settlements up to 100 mm for the 1993–2009 period for the whole Orihuela city. Although no differential synthetic aperture radar interferometry information is available for the church due to the loss of interferometric coherence, the spatial analysis of nearby deformation combined with fieldwork has advanced the current understanding on the mechanisms that affect the Santas Justa and Rufina church. These results show the potential interest and the limitations of using this remote sensing technique as a complementary tool for the forensic analysis of building structures.