4 resultados para NGC-4649 M60

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. The open cluster NGC 7419 is known to contain five red supergiants and a very high number of Be stars. However, there are conflicting reports about its age and distance that prevent a useful comparison with other clusters. Aims. We intend to obtain more accurate parameters for NGC 7419, using techniques different from those of previous authors, so that it may be used as a calibrator for more obscured clusters. Methods. We obtained Strömgren photometry of the open cluster NGC 7419, as well as classification spectroscopy of ~20 stars in the area. We then applied standard analysis and classification techniques. Results. We find a distance of 4 ± 0.4 kpc and an age of 14 ± 2 Myr for NGC 7419. The main-sequence turn-off is found at spectral type B1, in excellent agreement. We identify 179 B-type members, implying that there are more than 1200 M⊙ in B stars at present. Extrapolating this to lower masses indicates an initial cluster mass of between 7000 and 10 000 M⊙, depending on the shape of the initial mass function. We find a very high fraction (≈40%) of Be stars around the turn-off, but very few Be stars at lower masses. We also report for the first time a strong variability in the emission characteristics of Be stars. We verified that the parameters of the red supergiant members can be used to obtain accurate cluster parameters. Conclusions. NGC 7419 is sufficiently massive to serve as a testbed for theoretical predictions and as a template to compare more obscured clusters. The distribution of stars above the main-sequence turn-off is difficult to accommodate with current evolutionary tracks. Though the presence of five red supergiants is marginally consistent with theoretical expectations, the high number of Be stars and very low number of luminous evolved B stars hint at some unknown physical factor that is not considered in current synthesis models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. Despite their importance to a number of astrophysical fields, the lifecycles of very massive stars are still poorly defined. In order to address this shortcoming, we present a detailed quantitative study of the physical properties of four early-B hypergiants (BHGs) of spectral type B1-4 Ia+; Cyg OB2 #12, ζ1 Sco, HD 190603 and BP Cru. These are combined with an analysis of their long-term spectroscopic and photometric behaviour in order to determine their evolutionary status. Methods. Quantitative analysis of UV–radio photometric and spectroscopic datasets was undertaken with a non-LTE model atmosphere code in order to derive physical parameters for comparison with apparently closely related objects, such as B supergiants (BSGs) and luminous blue variables (LBVs), and theoretical evolutionary predictions. Results. The long-term photospheric and spectroscopic datasets compiled for the early-B HGs revealed that they are remarkably stable over long periods ( ≥ 40 yrs), with the possible exception of ζ1 Sco prior to the 20th century; in contrast to the typical excursions that characterise LBVs. Quantitative analysis of ζ1 Sco, HD 190603 and BP Cru yielded physical properties intermediate between BSGs and LBVs; we therefore suggest that BHGs are the immediate descendants and progenitors (respectively) of such stars, for initial masses in the range ~30−60 M⊙. Comparison of the properties of ζ1 Sco with the stellar population of its host cluster/association NGC 6231/Sco OB1 provides further support for such an evolutionary scenario. In contrast, while the wind properties of Cyg OB2 #12 are consistent with this hypothesis, the combination of extreme luminosity and spectroscopic mass (~110 M⊙) and comparatively low temperature means it cannot be accommodated in such a scheme. Likewise, despite its co-location with several LBVs above the Humphreys-Davidson (HD) limit, the lack of long term variability and its unevolved chemistry apparently excludes such an identification. Since such massive stars are not expected to evolve to such cool temperatures, instead traversing an O4-6Ia → O4-6Ia+ → WN7-9ha pathway, the properties of Cyg OB2 #12 are therefore difficult to understand under current evolutionary paradigms. Finally, we note that as with AG Car in its cool phase, despite exceeding the HD limit, the properties of Cyg OB2 #12 imply that it lies below the Eddington limit – thus we conclude that the HD limit does not define a region of the HR diagram inherently inimical to the presence of massive stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Luminous blue variables (LBVs) are a class of highly unstable stars that have been proposed to play a critical role in massive stellar evolution as well as being the progenitors of some of the most luminous supernovae known. However the physical processes underlying their characteristic instabilities are currently unknown. Aims. In order to provide observational constraints on this behaviour we have initiated a pilot study of the population of (candidate) LBVs in the Local Group galaxy M 33. Methods. To accomplish this we have obtained new spectra of 18 examples within M 33. These provide a baseline of ≥ 4 yr with respect to previous observations, which is well suited to identifying LBV outbursts. We also employed existing multi-epoch optical and mid-IR surveys of M 33 to further constrain the variability of the sample and search for the presence of dusty ejecta. Results. Combining the datasets reveals that spectroscopic and photometric variability appears common, although in the majority of cases further observations will be needed to distinguish between an origin for this behavour in short lived stochastic wind structure and low level photospheric pulsations or coherent long term LBV excursions. Of the known LBVs we report a hitherto unidentified excursion of M 33 Var C between 2001-5, while the transition of the WNLh star B517 to a cooler B supergiant phase between 1993−2010 implies an LBV classification. Proof-of-concept quantitative model atmosphere analysis is provided for Romano’s star; the resultant stellar parameters being consistent with the finding that the LBV excursions of this star are accompanied by changes in bolometric luminosity. The combination of temperature and luminosity of two stars, the BHG [HS80] 110A and the cool hypergiant B324, appear to be in violation of the empirical Humphreys-Davidson limit. Mid-IR observations demonstrate that a number of candidates appear associated with hot circumstellar dust, although no objects as extreme as η Car are identified. The combined dataset suggests that the criteria employed to identify candidate LBVs results in a heterogeneous sample, also containing stars demonstrating the B[e] phenomenon. Of these, a subset of optically faint, low luminosity stars associated with hot dust are of particular interest since they appear similar to the likely progenitor of SN 2008S and the 2008 NGC 300 transient (albeit suffering less intrinsic extinction). Conclusions. The results of such a multiwavelength observational approach, employing multiplexing spectrographs and supplemented with quantitative model atmosphere analysis, appears to show considerable promise in both identifying and characterising the physical properties of LBVs as well as other short lived phases of massive stellar evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopy of some 100 000 Milky Way stars using the FLAMES spectrograph at the VLT, down to V = 19 mag, systematically covering all the main components of the Milky Way and providing the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. Observations of young open clusters, in particular, are giving new insights into their initial structure, kinematics, and their subsequent evolution. Aims. This paper describes the analysis of UVES and GIRAFFE spectra acquired in the fields of young clusters whose population includes pre-main sequence (PMS) stars. The analysis is applied to all stars in such fields, regardless of any prior information on membership, and provides fundamental stellar atmospheric parameters, elemental abundances, and PMS-specific parameters such as veiling, accretion, and chromospheric activity. Methods. When feasible, different methods were used to derive raw parameters (e.g. line equivalent widths) fundamental atmospheric parameters and derived parameters (e.g. abundances). To derive some of these parameters, we used methods that have been extensively used in the past and new ones developed in the context of the Gaia-ESO survey enterprise. The internal precision of these quantities was estimated by inter-comparing the results obtained by these different methods, while the accuracy was estimated by comparison with independent external data, such as effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. A validation procedure based on these comparisons was applied to discard spurious or doubtful results and produce recommended parameters. Specific strategies were implemented to resolve problems of fast rotation, accretion signatures, chromospheric activity, and veiling. Results. The analysis carried out on spectra acquired in young cluster fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. These include targets in the fields of the ρ Oph, Cha I, NGC 2264, γ Vel, and NGC 2547 clusters. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide stellar parameters with confidence for the much larger GIRAFFE sample. Precisions are estimated to be ≈120 K rms in Teff, ≈0.3 dex rms in log g, and ≈0.15 dex rms in [Fe/H] for the UVES and GIRAFFE setups.