1 resultado para NEW DEAL
em Universidad de Alicante
Resumo:
The Lomb periodogram has been traditionally a tool that allows us to elucidate if a frequency turns out to be important for explaining the behaviour of a given time series. Many linear and nonlinear reiterative harmonic processes that are used for studying the spectral content of a time series take into account this periodogram in order to avoid including spurious frequencies in their models due to the leakage problem of energy from one frequency to others. However, the estimation of the periodogram requires long computation time that makes the harmonic analysis slower when we deal with certain time series. Here we propose an algorithm that accelerates the extraction of the most remarkable frequencies from the periodogram, avoiding its whole estimation of the harmonic process at each iteration. This algorithm allows the user to perform a specific analysis of a given scalar time series. As a result, we obtain a functional model made of (1) a trend component, (2) a linear combination of Fourier terms, and (3) the so-called mixed secular terms by reducing the computation time of the estimation of the periodogram.